#pragma once #include std::tuple remove_self_loops(at::Tensor row, at::Tensor col) { auto mask = row != col; return make_tuple(row.masked_select(mask), col.masked_select(mask)); } std::tuple remove_self_loops(at::Tensor row, at::Tensor col, at::Tensor weight) { auto mask = row != col; return make_tuple(row.masked_select(mask), col.masked_select(mask), weight.masked_select(mask)); } at::Tensor randperm(int64_t n) { auto out = at::empty(n, torch::CPU(at::kLong)); at::randperm_out(out, n); return out; } std::tuple rand(at::Tensor row, at::Tensor col) { auto perm = randperm(row.size(0)); return make_tuple(row.index_select(perm), col.index_select(perm)); } std::tuple sort_by_row(at::Tensor row, at::Tensor col) { Tensor perm; tie(row, perm) = row.sort(); col = col.index_select(0, perm); return stack({row, col}, 0); } inline Tensor degree(Tensor row, int64_t num_nodes) { auto zero = zeros(num_nodes, row.type()); auto one = ones(row.size(0), row.type()); return zero.scatter_add_(0, row, one); } inline tuple to_csr(Tensor index, int64_t num_nodes) { index = sort_by_row(index); auto row = degree(index[0], num_nodes).cumsum(0); row = cat({zeros(1, row.type()), row}, 0); // Prepend zero. return make_tuple(row, index[1]); } // std::tie(row, col) = randperm(row, col); // std::tie(row, col) = to_csr(row, col);