import torch if torch.cuda.is_available(): import knn_cuda def knn(x, y, k, batch_x=None, batch_y=None): """Finds for each element in `y` the `k` nearest points in `x`. Args: x (Tensor): D-dimensional point features. y (Tensor): D-dimensional point features. k (int): The number of neighbors. batch_x (LongTensor, optional): Vector that maps each point to its example identifier. If :obj:`None`, all points belong to the same example. If not :obj:`None`, points in the same example need to have contiguous memory layout and :obj:`batch` needs to be ascending. (default: :obj:`None`) batch_y (LongTensor, optional): See `batch_x` (default: :obj:`None`) :rtype: :class:`LongTensor` Examples:: >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) >>> batch_x = torch.Tensor([0, 0, 0, 0]) >>> y = torch.Tensor([[-1, 0], [1, 0]]) >>> batch_x = torch.Tensor([0, 0]) >>> out = knn(x, y, 2, batch_x, batch_y) """ if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y assert x.is_cuda assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) op = knn_cuda.knn if x.is_cuda else None assign_index = op(x, y, k, batch_x, batch_y) return assign_index def knn_graph(x, k, batch=None): """Finds for each element in `x` the `k` nearest points. Args: x (Tensor): D-dimensional point features. k (int): The number of neighbors. batch (LongTensor, optional): Vector that maps each point to its example identifier. If :obj:`None`, all points belong to the same example. If not :obj:`None`, points in the same example need to have contiguous memory layout and :obj:`batch` needs to be ascending. (default: :obj:`None`) :rtype: :class:`LongTensor` Examples:: >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) >>> batch = torch.Tensor([0, 0, 0, 0]) >>> out = knn_graph(x, 2, batch) """ edge_index = knn(x, x, k + 1, batch, batch) row, col = edge_index mask = row != col row, col = row[mask], col[mask] return torch.stack([row, col], dim=0)