import torch import scipy.spatial if torch.cuda.is_available(): import torch_cluster.radius_cuda def sample(col, count): if col.size(0) > count: col = col[torch.randperm(col.size(0))][:count] return col def radius(x, y, r, batch_x=None, batch_y=None, max_num_neighbors=32): r"""Finds for each element in :obj:`y` all points in :obj:`x` within distance :obj:`r`. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. y (Tensor): Node feature matrix :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`. r (float): The radius. batch_x (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) batch_y (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each node to a specific example. (default: :obj:`None`) max_num_neighbors (int, optional): The maximum number of neighbors to return for each element in :obj:`y`. (default: :obj:`32`) :rtype: :class:`LongTensor` .. testsetup:: import torch from torch_cluster import radius .. testcode:: >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) >>> batch_x = torch.tensor([0, 0, 0, 0]) >>> y = torch.Tensor([[-1, 0], [1, 0]]) >>> batch_y = torch.tensor([0, 0]) >>> assign_index = radius(x, y, 1.5, batch_x, batch_y) """ if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) if x.is_cuda: return torch_cluster.radius_cuda.radius(x, y, r, batch_x, batch_y, max_num_neighbors) x = torch.cat([x, 2 * r * batch_x.view(-1, 1).to(x.dtype)], dim=-1) y = torch.cat([y, 2 * r * batch_y.view(-1, 1).to(y.dtype)], dim=-1) tree = scipy.spatial.cKDTree(x.detach().numpy()) col = tree.query_ball_point(y.detach().numpy(), r) col = [sample(torch.tensor(c), max_num_neighbors) for c in col] row = [torch.full_like(c, i) for i, c in enumerate(col)] row, col = torch.cat(row, dim=0), torch.cat(col, dim=0) mask = col < int(tree.n) return torch.stack([row[mask], col[mask]], dim=0) def radius_graph(x, r, batch=None, loop=False, max_num_neighbors=32, flow='source_to_target'): r"""Computes graph edges to all points within a given distance. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. r (float): The radius. batch (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) loop (bool, optional): If :obj:`True`, the graph will contain self-loops. (default: :obj:`False`) max_num_neighbors (int, optional): The maximum number of neighbors to return for each element in :obj:`y`. (default: :obj:`32`) flow (string, optional): The flow direction when using in combination with message passing (:obj:`"source_to_target"` or :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`) :rtype: :class:`LongTensor` .. testsetup:: import torch from torch_cluster import radius_graph .. testcode:: >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) >>> batch = torch.tensor([0, 0, 0, 0]) >>> edge_index = radius_graph(x, r=1.5, batch=batch, loop=False) """ assert flow in ['source_to_target', 'target_to_source'] row, col = radius(x, x, r, batch, batch, max_num_neighbors + 1) row, col = (col, row) if flow == 'source_to_target' else (row, col) if not loop: mask = row != col row, col = row[mask], col[mask] return torch.stack([row, col], dim=0)