from itertools import product import pytest import torch from torch_cluster import nearest from torch_cluster.testing import devices, grad_dtypes, tensor @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_nearest(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], [-2, -2], [-2, +2], [+2, +2], [+2, -2], ], dtype, device) y = tensor([ [-1, 0], [+1, 0], [-2, 0], [+2, 0], ], dtype, device) batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) batch_y = tensor([0, 0, 1, 1], torch.long, device) out = nearest(x, y, batch_x, batch_y) assert out.tolist() == [0, 0, 1, 1, 2, 2, 3, 3] out = nearest(x, y) assert out.tolist() == [0, 0, 1, 1, 2, 2, 3, 3] # Invalid input: instance 1 only in batch_x batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) batch_y = tensor([0, 0, 0, 0], torch.long, device) with pytest.raises(ValueError): nearest(x, y, batch_x, batch_y) # Invalid input: instance 1 only in batch_x (implicitly as batch_y=None) with pytest.raises(ValueError): nearest(x, y, batch_x, batch_y=None) # Invalid input: instance 2 only in batch_x # (i.e.instance in the middle missing) batch_x = tensor([0, 0, 1, 1, 2, 2, 3, 3], torch.long, device) batch_y = tensor([0, 1, 3, 3], torch.long, device) with pytest.raises(ValueError): nearest(x, y, batch_x, batch_y) # Invalid input: batch_x unsorted batch_x = tensor([0, 0, 1, 0, 0, 0, 0], torch.long, device) batch_y = tensor([0, 0, 1, 1], torch.long, device) with pytest.raises(ValueError): nearest(x, y, batch_x, batch_y) # Invalid input: batch_y unsorted batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) batch_y = tensor([0, 0, 1, 0], torch.long, device) with pytest.raises(ValueError): nearest(x, y, batch_x, batch_y)