from itertools import product import pytest import torch from torch_cluster import fps from .utils import grad_dtypes, devices, tensor @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_fps(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], [-2, -2], [-2, +2], [+2, +2], [+2, -2], ], dtype, device) batch = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) out = fps(x, batch, ratio=torch.tensor(0.5), random_start=False) assert out.tolist() == [0, 2, 4, 6] out = fps(x, ratio=torch.tensor(0.5), random_start=False) assert out.sort()[0].tolist() == [0, 5, 6, 7] @pytest.mark.parametrize('device', devices) def test_random_fps(device): N = 1024 for _ in range(5): pos = torch.randn((2 * N, 3), device=device) batch_1 = torch.zeros(N, dtype=torch.long, device=device) batch_2 = torch.ones(N, dtype=torch.long, device=device) batch = torch.cat([batch_1, batch_2]) idx = fps(pos, batch, ratio=torch.tensor(0.5)) assert idx.min() >= 0 and idx.max() < 2 * N