from itertools import product import pytest import torch from torch_cluster import radius, radius_graph from .utils import grad_dtypes, devices, tensor def coalesce(index): N = index.max().item() + 1 tensor = torch.sparse_coo_tensor(index, index.new_ones(index.size(1)), torch.Size([N, N])) return tensor.coalesce().indices() @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_radius(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], [-1, -1], [-1, +1], [+1, +1], [+1, -1], ], dtype, device) y = tensor([ [0, 0], [0, 1], ], dtype, device) batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) batch_y = tensor([0, 1], torch.long, device) out = radius(x, y, 2, batch_x, batch_y, max_num_neighbors=4) assert coalesce(out).tolist() == [[0, 0, 0, 0, 1, 1], [0, 1, 2, 3, 5, 6]] @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_radius_graph(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], ], dtype, device) out = radius_graph(x, r=2) assert coalesce(out).tolist() == [[0, 0, 1, 1, 2, 2, 3, 3], [1, 3, 0, 2, 1, 3, 0, 2]]