from itertools import product import pytest import torch from torch_cluster import radius from .utils import tensor, grad_dtypes devices = [torch.device('cuda')] @pytest.mark.skipif(not torch.cuda.is_available(), reason='CUDA not available') @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_radius(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], [-1, -1], [-1, +1], [+1, +1], [+1, -1], ], dtype, device) y = tensor([ [0, 0], [0, 1], ], dtype, device) batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) batch_y = tensor([0, 1], torch.long, device) out = radius(x, y, 2, batch_x, batch_y, max_num_neighbors=4) assert out.tolist() == [[0, 0, 0, 0, 1, 1], [0, 1, 2, 3, 5, 6]]