from itertools import product import pytest import torch import scipy.spatial from torch_cluster import radius, radius_graph from .utils import grad_dtypes, devices, tensor @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_radius(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], [-1, -1], [-1, +1], [+1, +1], [+1, -1], ], dtype, device) y = tensor([ [0, 0], [0, 1], ], dtype, device) batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) batch_y = tensor([0, 1], torch.long, device) out = radius(x, y, 2, max_num_neighbors=4) assert out.tolist() == [[0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 1, 2, 5, 6]] out = radius(x, y, 2, batch_x, batch_y, max_num_neighbors=4) assert out.tolist() == [[0, 0, 0, 0, 1, 1], [0, 1, 2, 3, 5, 6]] @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_radius_graph(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], ], dtype, device) row, col = radius_graph(x, r=2, flow='target_to_source') assert row.tolist() == [0, 0, 1, 1, 2, 2, 3, 3] assert col.tolist() == [1, 3, 0, 2, 1, 3, 0, 2] row, col = radius_graph(x, r=2, flow='source_to_target') assert row.tolist() == [1, 3, 0, 2, 1, 3, 0, 2] assert col.tolist() == [0, 0, 1, 1, 2, 2, 3, 3] @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_radius_graph_large(dtype, device): x = torch.randn(1000, 3) row, col = radius_graph(x, r=0.5, flow='target_to_source', loop=True, max_num_neighbors=1000, num_workers=6) pred = set([(i, j) for i, j in zip(row.tolist(), col.tolist())]) tree = scipy.spatial.cKDTree(x.numpy()) col = tree.query_ball_point(x.cpu(), r=0.5) truth = set([(i, j) for i, ns in enumerate(col) for j in ns]) assert pred == truth