#include "radius_cuda.h" #include #include "utils.cuh" #define THREADS 1024 template __global__ void radius_kernel(const scalar_t *x, const scalar_t *y, const int64_t *ptr_x, const int64_t *ptr_y, int64_t *row, int64_t *col, scalar_t radius, int64_t max_num_neighbors, int64_t dim) { const int64_t batch_idx = blockIdx.x; const int64_t x_start_idx = ptr_x[batch_idx]; const int64_t x_end_idx = ptr_x[batch_idx + 1]; const int64_t y_start_idx = ptr_y[batch_idx]; const int64_t y_end_idx = ptr_y[batch_idx + 1]; for (int64_t n_y = y_start_idx + threadIdx.x; n_y < y_end_idx; n_y += THREADS) { int64_t count = 0; for (int64_t n_x = x_start_idx; n_x < x_end_idx; n_x++) { scalar_t dist = 0; for (int64_t d = 0; d < dim; d++) { dist += (x[n_x * dim + d] - y[n_y * dim + d]) * (x[n_x * dim + d] - y[n_y * dim + d]); } dist = sqrt(dist); if (dist <= radius) { row[n_y * max_num_neighbors + count] = n_y; col[n_y * max_num_neighbors + count] = n_x; count++; } if (count >= max_num_neighbors) { break; } } } } torch::Tensor radius_cuda(torch::Tensor x, torch::Tensor y, torch::optional ptr_x, torch::optional ptr_y, double r, int64_t max_num_neighbors) { CHECK_CUDA(x); CHECK_INPUT(x.dim() == 2); CHECK_CUDA(y); CHECK_INPUT(y.dim() == 2); cudaSetDevice(x.get_device()); if (ptr_x.has_value()) { CHECK_CUDA(ptr_x.value()); CHECK_INPUT(ptr_x.value().dim() == 1); } else { ptr_x = torch::tensor({0, x.size(0)}, x.options().dtype(torch::kLong)); } if (ptr_y.has_value()) { CHECK_CUDA(ptr_y.value()); CHECK_INPUT(ptr_y.value().dim() == 1); } else { ptr_y = torch::tensor({0, y.size(0)}, y.options().dtype(torch::kLong)); } CHECK_INPUT(ptr_x.value().numel() == ptr_y.value().numel()); auto row = torch::full(y.size(0) * max_num_neighbors, -1, ptr_y.value().options()); auto col = torch::full(y.size(0) * max_num_neighbors, -1, ptr_y.value().options()); auto stream = at::cuda::getCurrentCUDAStream(); AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "radius_kernel", [&] { radius_kernel<<>>( x.data_ptr(), y.data_ptr(), ptr_x.value().data_ptr(), ptr_y.value().data_ptr(), row.data_ptr(), col.data_ptr(), r, max_num_neighbors, x.size(1)); }); auto mask = row != -1; return torch::stack({row.masked_select(mask), col.masked_select(mask)}, 0); }