import torch import cluster_cpu def grid_cluster(pos, size, start=None, end=None): start = pos.t().min(dim=1)[0] if start is None else start end = pos.t().max(dim=1)[0] if end is None else end return cluster_cpu.grid(pos, size, start, end) def graclus_cluster(row, col, num_nodes): return cluster_cpu.graclus(row, col, num_nodes) pos = torch.tensor([[1, 1], [3, 3], [5, 5], [7, 7]]) size = torch.tensor([2, 2]) start = torch.tensor([0, 0]) end = torch.tensor([7, 7]) print('pos', pos.tolist()) print('size', size.tolist()) cluster = grid_cluster(pos, size) print('result', cluster.tolist(), cluster.dtype) row = torch.tensor([0, 0, 1, 1, 1, 2, 2, 2, 3, 3]) col = torch.tensor([1, 2, 0, 2, 3, 0, 1, 3, 1, 2]) print(row) print(col) print('-----------------') cluster = graclus_cluster(row, col, 4) print(cluster)