from typing import Optional import torch import scipy.spatial def knn(x: torch.Tensor, y: torch.Tensor, k: int, batch_x: Optional[torch.Tensor] = None, batch_y: Optional[torch.Tensor] = None, cosine: bool = False) -> torch.Tensor: r"""Finds for each element in :obj:`y` the :obj:`k` nearest points in :obj:`x`. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. y (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{M \times F}`. k (int): The number of neighbors. batch_x (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) batch_y (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each node to a specific example. (default: :obj:`None`) cosine (boolean, optional): If :obj:`True`, will use the cosine distance instead of euclidean distance to find nearest neighbors. (default: :obj:`False`) :rtype: :class:`LongTensor` .. code-block:: python import torch from torch_cluster import knn x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch_x = torch.tensor([0, 0, 0, 0]) y = torch.Tensor([[-1, 0], [1, 0]]) batch_x = torch.tensor([0, 0]) assign_index = knn(x, y, 2, batch_x, batch_y) """ x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y if x.is_cuda: if batch_x is not None: assert x.size(0) == batch_x.numel() batch_size = int(batch_x.max()) + 1 deg = x.new_zeros(batch_size, dtype=torch.long) deg.scatter_add_(0, batch_x, torch.ones_like(batch_x)) ptr_x = deg.new_zeros(batch_size + 1) torch.cumsum(deg, 0, out=ptr_x[1:]) else: ptr_x = torch.tensor([0, x.size(0)], device=x.device) if batch_y is not None: assert y.size(0) == batch_y.numel() batch_size = int(batch_y.max()) + 1 deg = y.new_zeros(batch_size, dtype=torch.long) deg.scatter_add_(0, batch_y, torch.ones_like(batch_y)) ptr_y = deg.new_zeros(batch_size + 1) torch.cumsum(deg, 0, out=ptr_y[1:]) else: ptr_y = torch.tensor([0, y.size(0)], device=y.device) return torch.ops.torch_cluster.knn(x, y, ptr_x, ptr_y, k, cosine) else: if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) if cosine: raise NotImplementedError('`cosine` argument not supported on CPU') # Translate and rescale x and y to [0, 1]. min_xy = min(x.min().item(), y.min().item()) x, y = x - min_xy, y - min_xy max_xy = max(x.max().item(), y.max().item()) x.div_(max_xy) y.div_(max_xy) # Concat batch/features to ensure no cross-links between examples. x = torch.cat([x, 2 * x.size(1) * batch_x.view(-1, 1).to(x.dtype)], -1) y = torch.cat([y, 2 * y.size(1) * batch_y.view(-1, 1).to(y.dtype)], -1) tree = scipy.spatial.cKDTree(x.detach().numpy()) dist, col = tree.query(y.detach().cpu(), k=k, distance_upper_bound=x.size(1)) dist = torch.from_numpy(dist).to(x.dtype) col = torch.from_numpy(col).to(torch.long) row = torch.arange(col.size(0), dtype=torch.long) row = row.view(-1, 1).repeat(1, k) mask = ~torch.isinf(dist).view(-1) row, col = row.view(-1)[mask], col.view(-1)[mask] return torch.stack([row, col], dim=0) def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None, loop: bool = False, flow: str = 'source_to_target', cosine: bool = False) -> torch.Tensor: r"""Computes graph edges to the nearest :obj:`k` points. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. k (int): The number of neighbors. batch (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) loop (bool, optional): If :obj:`True`, the graph will contain self-loops. (default: :obj:`False`) flow (string, optional): The flow direction when using in combination with message passing (:obj:`"source_to_target"` or :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`) cosine (boolean, optional): If :obj:`True`, will use the cosine distance instead of euclidean distance to find nearest neighbors. (default: :obj:`False`) :rtype: :class:`LongTensor` .. code-block:: python import torch from torch_cluster import knn_graph x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch = torch.tensor([0, 0, 0, 0]) edge_index = knn_graph(x, k=2, batch=batch, loop=False) """ assert flow in ['source_to_target', 'target_to_source'] row, col = knn(x, x, k if loop else k + 1, batch, batch, cosine=cosine) row, col = (col, row) if flow == 'source_to_target' else (row, col) if not loop: mask = row != col row, col = row[mask], col[mask] return torch.stack([row, col], dim=0)