/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #pragma once #include "nanoflann.hpp" #include // ===== This example shows how to use nanoflann with these types of containers: // ======= // typedef std::vector > my_vector_of_vectors_t; // typedef std::vector my_vector_of_vectors_t; // This // requires #include // ===================================================================================== /** A simple vector-of-vectors adaptor for nanoflann, without duplicating the * storage. The i'th vector represents a point in the state space. * * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality * for the points in the data set, allowing more compiler optimizations. \tparam * num_t The type of the point coordinates (typically, double or float). \tparam * Distance The distance metric to use: nanoflann::metric_L1, * nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. \tparam IndexType The * type for indices in the KD-tree index (typically, size_t of int) */ template struct KDTreeVectorOfVectorsAdaptor { typedef KDTreeVectorOfVectorsAdaptor self_t; typedef typename Distance::template traits::distance_t metric_t; typedef nanoflann::KDTreeSingleIndexAdaptor index_t; index_t *index; //! The kd-tree index for the user to call its methods as //! usual with any other FLANN index. /// Constructor: takes a const ref to the vector of vectors object with the /// data points KDTreeVectorOfVectorsAdaptor(const size_t /* dimensionality */, const VectorOfVectorsType &mat, const int leaf_max_size = 10) : m_data(mat) { assert(mat.size() != 0 && mat[0].size() != 0); const size_t dims = mat[0].size(); if (DIM > 0 && static_cast(dims) != DIM) throw std::runtime_error( "Data set dimensionality does not match the 'DIM' template argument"); index = new index_t(static_cast(dims), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size)); index->buildIndex(); } ~KDTreeVectorOfVectorsAdaptor() { delete index; } const VectorOfVectorsType &m_data; /** Query for the \a num_closest closest points to a given point (entered as * query_point[0:dim-1]). Note that this is a short-cut method for * index->findNeighbors(). The user can also call index->... methods as * desired. \note nChecks_IGNORED is ignored but kept for compatibility with * the original FLANN interface. */ inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const { nanoflann::KNNResultSet resultSet(num_closest); resultSet.init(out_indices, out_distances_sq); index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); } /** @name Interface expected by KDTreeSingleIndexAdaptor * @{ */ const self_t &derived() const { return *this; } self_t &derived() { return *this; } // Must return the number of data points inline size_t kdtree_get_point_count() const { return m_data.size(); } // Returns the dim'th component of the idx'th point in the class: inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const { return m_data[idx][dim]; } // Optional bounding-box computation: return false to default to a standard // bbox computation loop. // Return true if the BBOX was already computed by the class and returned in // "bb" so it can be avoided to redo it again. Look at bb.size() to find out // the expected dimensionality (e.g. 2 or 3 for point clouds) template bool kdtree_get_bbox(BBOX & /*bb*/) const { return false; } /** @} */ }; // end of KDTreeVectorOfVectorsAdaptor