import torch import scipy.spatial if torch.cuda.is_available(): import torch_cluster.radius_cuda def radius(x, y, r, batch_x=None, batch_y=None, max_num_neighbors=32): r"""Finds for each element in :obj:`y` all points in :obj:`x` within distance :obj:`r`. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. y (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{M \times F}`. r (float): The radius. batch_x (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. (default: :obj:`None`) batch_y (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each node to a specific example. (default: :obj:`None`) max_num_neighbors (int, optional): The maximum number of neighbors to return for each element in :obj:`y`. (default: :obj:`32`) :rtype: :class:`LongTensor` .. testsetup:: import torch from torch_cluster import radius .. testcode:: >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) >>> batch_x = torch.tensor([0, 0, 0, 0]) >>> y = torch.Tensor([[-1, 0], [1, 0]]) >>> batch_x = torch.tensor([0, 0]) >>> assign_index = radius(x, y, 1.5, batch_x, batch_y) """ if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) if x.is_cuda: return torch_cluster.radius_cuda.radius(x, y, r, batch_x, batch_y, max_num_neighbors) x = torch.cat([x, 2 * r * batch_x.view(-1, 1).to(x.dtype)], dim=-1) y = torch.cat([y, 2 * r * batch_y.view(-1, 1).to(y.dtype)], dim=-1) tree = scipy.spatial.cKDTree(x) _, col = tree.query(y, k=max_num_neighbors, distance_upper_bound=r) col = [torch.tensor(c) for c in col] row = [torch.full_like(c, i) for i, c in enumerate(col)] row, col = torch.cat(row, dim=0), torch.cat(col, dim=0) row = row[col>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) >>> batch = torch.tensor([0, 0, 0, 0]) >>> edge_index = radius_graph(x, r=1.5, batch=batch, loop=False) """ edge_index = radius(x, x, r, batch, batch, max_num_neighbors + 1) row, col = edge_index if not loop: row, col = edge_index mask = row != col row, col = row[mask], col[mask] edge_index = torch.stack([row, col], dim=0) return edge_index