from itertools import product import pytest import scipy.spatial import torch from torch_cluster import knn, knn_graph from torch_cluster.testing import devices, grad_dtypes, tensor def to_set(edge_index): return set([(i, j) for i, j in edge_index.t().tolist()]) @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_knn(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], [-1, -1], [-1, +1], [+1, +1], [+1, -1], ], dtype, device) y = tensor([ [1, 0], [-1, 0], ], dtype, device) batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device) batch_y = tensor([0, 1], torch.long, device) edge_index = knn(x, y, 2) assert to_set(edge_index) == set([(0, 2), (0, 3), (1, 0), (1, 1)]) jit = torch.jit.script(knn) edge_index = jit(x, y, 2) assert to_set(edge_index) == set([(0, 2), (0, 3), (1, 0), (1, 1)]) edge_index = knn(x, y, 2, batch_x, batch_y) assert to_set(edge_index) == set([(0, 2), (0, 3), (1, 4), (1, 5)]) if x.is_cuda: edge_index = knn(x, y, 2, batch_x, batch_y, cosine=True) assert to_set(edge_index) == set([(0, 2), (0, 3), (1, 4), (1, 5)]) # Skipping a batch batch_x = tensor([0, 0, 0, 0, 2, 2, 2, 2], torch.long, device) batch_y = tensor([0, 2], torch.long, device) edge_index = knn(x, y, 2, batch_x, batch_y) assert to_set(edge_index) == set([(0, 2), (0, 3), (1, 4), (1, 5)]) @pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices)) def test_knn_graph(dtype, device): x = tensor([ [-1, -1], [-1, +1], [+1, +1], [+1, -1], ], dtype, device) edge_index = knn_graph(x, k=2, flow='target_to_source') assert to_set(edge_index) == set([(0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3), (3, 0), (3, 2)]) edge_index = knn_graph(x, k=2, flow='source_to_target') assert to_set(edge_index) == set([(1, 0), (3, 0), (0, 1), (2, 1), (1, 2), (3, 2), (0, 3), (2, 3)]) jit = torch.jit.script(knn_graph) edge_index = jit(x, k=2, flow='source_to_target') assert to_set(edge_index) == set([(1, 0), (3, 0), (0, 1), (2, 1), (1, 2), (3, 2), (0, 3), (2, 3)]) @pytest.mark.parametrize('dtype,device', product([torch.float], devices)) def test_knn_graph_large(dtype, device): x = torch.randn(1000, 3, dtype=dtype, device=device) edge_index = knn_graph(x, k=5, flow='target_to_source', loop=True) tree = scipy.spatial.cKDTree(x.cpu().numpy()) _, col = tree.query(x.cpu(), k=5) truth = set([(i, j) for i, ns in enumerate(col) for j in ns]) assert to_set(edge_index.cpu()) == truth