import torch import scipy.cluster if torch.cuda.is_available(): import nearest_cuda def nearest(x, y, batch_x=None, batch_y=None): """Finds for each element in `x` its nearest point in `y`. Args: x (Tensor): D-dimensional point features. y (Tensor): D-dimensional point features. batch_x (LongTensor, optional): Vector that maps each point to its example identifier. If :obj:`None`, all points belong to the same example. If not :obj:`None`, points in the same example need to have contiguous memory layout and :obj:`batch` needs to be ascending. (default: :obj:`None`) batch_y (LongTensor, optional): See `batch_x` (default: :obj:`None`) Examples:: >>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) >>> batch_x = torch.Tensor([0, 0, 0, 0]) >>> y = torch.Tensor([[-1, 0], [1, 0]]) >>> batch_x = torch.Tensor([0, 0]) >>> cluster = nearest(x, y, batch_x, batch_y) """ if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) if x.is_cuda: return nearest_cuda.nearest(x, y, batch_x, batch_y) # Rescale x and y. min_xy = min(x.min().item(), y.min().item()) x, y = x - min_xy, y - min_xy max_xy = max(x.max().item(), y.max().item()) x, y, = x / max_xy, y / max_xy # Concat batch/features to ensure no cross-links between examples exist. x = torch.cat([x, 2 * x.size(1) * batch_x.view(-1, 1).to(x.dtype)], dim=-1) y = torch.cat([y, 2 * y.size(1) * batch_y.view(-1, 1).to(y.dtype)], dim=-1) return torch.from_numpy(scipy.cluster.vq.vq(x, y)[0]).to(torch.long)