[pypi-image]: https://badge.fury.io/py/torch-cluster.svg [pypi-url]: https://pypi.python.org/pypi/torch-cluster [build-image]: https://travis-ci.org/rusty1s/pytorch_cluster.svg?branch=master [build-url]: https://travis-ci.org/rusty1s/pytorch_cluster [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master # PyTorch Cluster [![PyPI Version][pypi-image]][pypi-url] [![Build Status][build-image]][build-url] [![Code Coverage][coverage-image]][coverage-url] -------------------------------------------------------------------------------- This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/). The package consists of the following clustering algorithms: * **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007) * **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017) * **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017) * **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation * Clustering based on **[Nearest](#nearest)** points * **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016) All included operations work on varying data types and are implemented both for CPU and GPU. ## Installation ### Binaries We provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://s3.eu-central-1.amazonaws.com/pytorch-geometric.com/whl/index.html). To install from binaries, simply run ``` pip install torch-cluster==latest+${CUDA} -f https://s3.eu-central-1.amazonaws.com/pytorch-geometric.com/whl/torch-1.4.0.html ``` where `${CUDA}` should be replaced by either `cpu`, `cu92`, `cu100` or `cu101` depending on your PyTorch installation. | | `cpu` | `cu92` | `cu100` | `cu101` | |-------------|-------|--------|---------|---------| | **Linux** | ✅ | ✅ | ✅ | ✅ | | **Windows** | ✅ | ❌ | ❌ | ✅ | | **macOS** | ✅ | | | | ### From source Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: ``` $ python -c "import torch; print(torch.__version__)" >>> 1.4.0 ``` $ python -c "import torch; print(torch.__version__)" >>> 1.1.0 $ echo $PATH >>> /usr/local/cuda/bin:... $ echo $CPATH >>> /usr/local/cuda/include:... ``` Then run: ``` pip install torch-cluster ``` When running in a docker container without nvidia driver, PyTorch needs to evaluate the compute capabilities and may fail. In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: ``` export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX" ``` ## Functions ### Graclus A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight). The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012) ```python import torch from torch_cluster import graclus_cluster row = torch.tensor([0, 1, 1, 2]) col = torch.tensor([1, 0, 2, 1]) weight = torch.Tensor([1, 1, 1, 1]) # Optional edge weights. cluster = graclus_cluster(row, col, weight) ``` ``` print(cluster) tensor([0, 0, 1]) ``` ### VoxelGrid A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel. ```python import torch from torch_cluster import grid_cluster pos = torch.Tensor([[0, 0], [11, 9], [2, 8], [2, 2], [8, 3]]) size = torch.Tensor([5, 5]) cluster = grid_cluster(pos, size) ``` ``` print(cluster) tensor([0, 5, 3, 0, 1]) ``` ### FarthestPointSampling A sampling algorithm, which iteratively samples the most distant point with regard to the rest points. ```python import torch from torch_cluster import fps x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch = torch.tensor([0, 0, 0, 0]) index = fps(x, batch, ratio=0.5, random_start=False) ``` ``` print(sample) tensor([0, 3]) ``` ### kNN-Graph Computes graph edges to the nearest *k* points. ```python import torch from torch_cluster import knn_graph x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch = torch.tensor([0, 0, 0, 0]) edge_index = knn_graph(x, k=2, batch=batch, loop=False) ``` ``` print(edge_index) tensor([[1, 2, 0, 3, 0, 3, 1, 2], [0, 0, 1, 1, 2, 2, 3, 3]]) ``` ### Radius-Graph Computes graph edges to all points within a given distance. ```python import torch from torch_cluster import radius_graph x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch = torch.tensor([0, 0, 0, 0]) edge_index = radius_graph(x, r=1.5, batch=batch, loop=False) ``` ``` print(edge_index) tensor([[1, 2, 0, 3, 0, 3, 1, 2], [0, 0, 1, 1, 2, 2, 3, 3]]) ``` ### Nearest Clusters points in *x* together which are nearest to a given query point in *y*. ```python import torch from torch_cluster import nearest x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch_x = torch.tensor([0, 0, 0, 0]) y = torch.Tensor([[-1, 0], [1, 0]]) batch_y = torch.tensor([0, 0]) cluster = nearest(x, y, batch_x, batch_y) ``` ``` print(cluster) tensor([0, 0, 1, 1]) ``` ### RandomWalk-Sampling Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`. ```python import torch from torch_cluster import random_walk row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4]) col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3]) start = torch.tensor([0, 1, 2, 3, 4]) walk = random_walk(row, col, start, walk_length=3) ``` ``` print(walk) tensor([[0, 1, 2, 4], [1, 3, 4, 2], [2, 4, 2, 1], [3, 4, 2, 4], [4, 3, 1, 0]]) ``` ## Running tests ``` python setup.py test ```