import torch if torch.cuda.is_available(): import nearest_cuda def nearest(x, y, batch_x=None, batch_y=None): if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y assert x.is_cuda assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) op = nearest_cuda.nearest if x.is_cuda else None out = op(x, y, batch_x, batch_y) return out