from .utils.ffi import grid def grid_cluster(pos, size, start=None, end=None): """Voxel grid clustering algorithm, which overlays a regular grid of user-defined size over the point cloud and clusters all points within a voxel. Args: pos (Tensor): D-dimensional position of points. size (Tensor): Size of a voxel in each dimension. start (Tensor or int, optional): Start position of the grid (in each dimension). (default: :obj:`None`) end (Tensor or int, optional): End position of the grid (in each dimension). (default: :obj:`None`) Examples:: >>> pos = torch.Tensor([[0, 0], [11, 9], [2, 8], [2, 2], [8, 3]]) >>> size = torch.Tensor([5, 5]) >>> cluster = grid_cluster(pos, size) """ pos = pos.unsqueeze(-1) if pos.dim() == 1 else pos assert pos.size(1) == size.size(0), ( 'Last dimension of position tensor must have same size as size tensor') start = pos.t().min(dim=1)[0] if start is None else start end = pos.t().max(dim=1)[0] if end is None else end pos, end = pos - start, end - start size = size.type_as(pos) count = (end / size).long() + 1 cluster = count.new(pos.size(0)) grid(cluster, pos, size, count) return cluster