import torch if torch.cuda.is_available(): import radius_cuda def radius(x, y, r, batch_x=None, batch_y=None, max_num_neighbors=32): if batch_x is None: batch_x = x.new_zeros(x.size(0), dtype=torch.long) if batch_y is None: batch_y = y.new_zeros(y.size(0), dtype=torch.long) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y assert x.is_cuda assert x.dim() == 2 and batch_x.dim() == 1 assert y.dim() == 2 and batch_y.dim() == 1 assert x.size(1) == y.size(1) assert x.size(0) == batch_x.size(0) assert y.size(0) == batch_y.size(0) op = radius_cuda.radius if x.is_cuda else None assign_index = op(x, y, r, batch_x, batch_y, max_num_neighbors) return assign_index def radius_graph(x, r, batch=None, max_num_neighbors=32): edge_index = radius(x, x, r, batch, batch, max_num_neighbors + 1) row, col = edge_index mask = row != col row, col = row[mask], col[mask] return torch.stack([row, col], dim=0)