Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torch-cluster
Commits
a4aa04db
Commit
a4aa04db
authored
Dec 22, 2023
by
quyuanhao123
Browse files
Update README_HIP.md
parent
21c987cd
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
71 additions
and
62 deletions
+71
-62
README_HIP.md
README_HIP.md
+71
-62
No files found.
README_HIP.md
View file @
a4aa04db
**编译安装步骤**
-
1. 安装与dtk版本对应的pytorch torchvision whl(可在光合社区下载https://developer.hpccube.com/tool/)以及其他依赖库
例如:
pip install https://cancon.hpccube.com:65024/directlink/4/pytorch/dtk22.10/torch-1.10.0a0+git2040069.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
pip install https://cancon.hpccube.com:65024/directlink/4/vision/dtk22.10/torchvision-0.10.0a0+e04d001.dtk2210-cp38-cp38-manylinux2014_x86_64.whl
pip install -r requirements.txt
-
2. 添加编译时的conda环境及部分库的环境变量
-
2.1 激活对应的conda环境:
source ~/miniconda3/etc/profile.d/conda.sh
conda activate torch1.10_py39_dtk22.10
- 2.2 加载对应的module,包括dtk:
module purge
module load compiler/devtoolset/7.3.1 mpi/hpcx/gcc-7.3.1 compiler/dtk/22.10.1
module list
- 2.3 加载所需的依赖库的环境变量(根据各集群实际路径调整):
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=$ROCM_PATH/rocrand/lib:$LD_LIBRARY_PATH
- 2.4 修改编译器环境变量:
export FORCE_ONLY_HIP=1
export CC=hipcc
export CXX=hipcc
-
3. 编译安装
python setup.py install
# <div align="center"><strong>torch-cluster-1.6.0</strong></div>
## 简介
torch-cluster是一个用于聚类的Python库,它使用PyTorch框架进行深度学习。它提供了一种简单而强大的方法来对数据集进行聚类,特别是对于大规模数据集。
## 依赖安装
+
pytorch1.10或者pytorch1.13 以及对应的torchvision(建议dtk-22.04.2、dtk-23.04与dtk-23.10)
+
python 3.7-3.10
### 1、使用源码编译方式安装
#### 编译环境准备
提供2种环境准备方式:
1.
基于光源pytorch基础镜像环境:镜像下载地址:
[
https://sourcefind.cn/#/image/dcu/pytorch
](
https://sourcefind.cn/#/image/dcu/pytorch
)
,根据pytorch、python、dtk及系统下载对应的镜像版本。
2.
基于现有python环境:安装pytorch和torchvision,whl包下载目录:
[
https://cancon.hpccube.com:65024/4/main/pytorch
](
https://cancon.hpccube.com:65024/4/main/pytorch
)
,
[
https://cancon.hpccube.com:65024/4/main/vision
](
https://cancon.hpccube.com:65024/4/main/vision
)
,根据python、dtk版本,下载对应pytorch和torchvision的whl包。安装命令如下:
```
shell
pip
install
torch
*
(
下载的torch的whl包
)
pip
install
torchvision
*
(
下载的torchvision的whl包
)
pip
install
setuptools
==
59.5.0 wheel
```
#### 源码编译安装
-
代码下载
```
shell
git clone http://developer.hpccube.com/codes/aicomponent/torch-cluster
# 根据编译需要切换分支
```
-
源码编译(进入torch-cluster目录):
```
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=$ROCM_PATH/rocrand/lib:$LD_LIBRARY_PATH
export FORCE_ONLY_HIP=1
export CC=hipcc
export CXX=hipcc
python setup.py install
```
#### 注意事项
+
若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
+
ROCM_PATH为dtk的路径,默认为/opt/dtk
## 验证
```
python
import
torch
from
torch_cluster
import
graclus_cluster
row
=
torch
.
tensor
([
0
,
1
,
1
,
2
])
col
=
torch
.
tensor
([
1
,
0
,
2
,
1
])
weight
=
torch
.
tensor
([
1.
,
1.
,
1.
,
1.
])
# Optional edge weights.
cluster
=
graclus_cluster
(
row
,
col
,
weight
)
```
```
print(cluster)
tensor([0, 0, 1])
```
## Known Issue
-
该库没有基于cpu环境修改,仅支持dcu,请在有dcu卡的环境运行。
-
如需完整使用所有pyg功能,请pip install torch-geometric
## 参考资料
-
[
README_ORIGIN
](
README_ORIGIN.md
)
-
[
https://pypi.org/project/torch-cluster/1.6.0/
](
https://pypi.org/project/torch-cluster/1.6.0/
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment