Commit 63c0dad6 authored by rusty1s's avatar rusty1s
Browse files

added consecutive call

parent cb1b4b1a
......@@ -7,7 +7,7 @@ def test_random():
[2, 3, 6, 5, 0, 0, 4, 5, 3, 1, 3, 6, 0, 3]])
# edge_attr = torch.Tensor([2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2])
rid = torch.arange(edge_index.max() + 1, out=edge_index.new())
output = random_cluster(edge_index, rid, perm_edges=False)
output = random_cluster(edge_index, rid=rid, perm_edges=False)
expected_output = [0, 1, 2, 0, 4, 1, 6]
expected_output = [0, 1, 2, 0, 3, 1, 4]
assert output.tolist() == expected_output
from .utils import get_func
from .utils import get_func, consecutive
from .degree import node_degree
from .permute import permute
def random_cluster(edge_index, rid=None, perm_edges=True, num_nodes=None):
def random_cluster(edge_index,
batch=None,
rid=None,
perm_edges=True,
num_nodes=None):
num_nodes = edge_index.max() + 1 if num_nodes is None else num_nodes
row, col = permute(edge_index, num_nodes, rid, perm_edges)
degree = node_degree(row, num_nodes, out=row.new())
......@@ -12,4 +17,10 @@ def random_cluster(edge_index, rid=None, perm_edges=True, num_nodes=None):
func = get_func('random', cluster)
func(cluster, row, col, degree)
cluster, u = consecutive(cluster)
if batch is None:
return cluster
else:
# TODO: Fix
return cluster, batch
......@@ -26,7 +26,7 @@ def get_type(max, cuda):
return torch.cuda.LongTensor if cuda else torch.LongTensor
def consecutive(tensor, return_batch=None):
def consecutive(tensor):
size = tensor.size()
u = unique(tensor.view(-1))
len = u[-1] + 1
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment