import torch import torch.nn.functional as F import tilelang from tilelang.autotuner import * import tilelang.language as T num_split = 4 def flashattn(batch, heads, kv_head_num, seqlen_kv, dim, pe_dim, block_N, block_H): scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504 # log2(e) shape_q = [batch, heads, (dim + pe_dim)] shape_k = [batch, seqlen_kv, kv_head_num, (dim + pe_dim)] shape_v = [batch, seqlen_kv, kv_head_num, dim] shape_o = [batch, heads, dim] part_shape = [batch, heads, num_split, dim] dtype = "float16" accum_dtype = "float" kv_group_num = heads // kv_head_num VALID_BLOCK_H = min(block_H, kv_group_num) assert kv_head_num == 1, "kv_head_num must be 1" @T.macro def flash_attn_split( Q: T.Buffer(shape_q, dtype), K: T.Buffer(shape_k, dtype), V: T.Buffer(shape_v, dtype), glse: T.Buffer([batch, heads, num_split], dtype), Output_partial: T.Buffer(part_shape, dtype), ): with T.Kernel( batch, heads // min(block_H, kv_group_num), num_split, threads=128) as (bx, by, bz): Q_shared = T.alloc_shared([block_H, (dim + pe_dim)], dtype) K_shared = T.alloc_shared([block_N, (dim + pe_dim)], dtype) V_shared = T.alloc_shared([block_N, dim], dtype) O_shared = T.alloc_shared([block_H, dim], dtype) acc_s = T.alloc_fragment([block_H, block_N], accum_dtype) acc_s_cast = T.alloc_fragment([block_H, block_N], dtype) acc_o = T.alloc_fragment([block_H, dim], accum_dtype) scores_max = T.alloc_fragment([block_H], accum_dtype) scores_max_prev = T.alloc_fragment([block_H], accum_dtype) scores_scale = T.alloc_fragment([block_H], accum_dtype) scores_sum = T.alloc_fragment([block_H], accum_dtype) logsum = T.alloc_fragment([block_H], accum_dtype) bid = bx hid = by sid = bz cur_kv_head = hid // (kv_group_num // block_H) T.annotate_layout({ O_shared: tilelang.layout.make_swizzled_layout(O_shared), }) T.copy(Q[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, :], Q_shared) T.fill(acc_o, 0) T.fill(logsum, 0) T.fill(scores_max, -T.infinity(accum_dtype)) loop_range = T.ceildiv((seqlen_kv // num_split), block_N) for k in T.Pipelined(loop_range, num_stages=1): T.copy( K[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid + (k + 1) * block_N, cur_kv_head, :], K_shared) T.clear(acc_s) T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow) T.copy(scores_max, scores_max_prev) T.fill(scores_max, -T.infinity(accum_dtype)) T.reduce_max(acc_s, scores_max, dim=1, clear=False) for i in T.Parallel(block_H): scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale) for i, j in T.Parallel(block_H, block_N): acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale) T.reduce_sum(acc_s, scores_sum, dim=1) for i in T.Parallel(block_H): logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i] T.copy(acc_s, acc_s_cast) for i, j in T.Parallel(block_H, dim): acc_o[i, j] *= scores_scale[i] T.copy( V[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid + (k + 1) * block_N, cur_kv_head, :], V_shared) T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow) for i, j in T.Parallel(block_H, dim): acc_o[i, j] /= logsum[i] for i in T.Parallel(block_H): logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale T.copy(logsum, glse[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, sid]) T.copy(acc_o, O_shared) T.copy(O_shared, Output_partial[bid, hid * VALID_BLOCK_H:(hid + 1) * VALID_BLOCK_H, sid, :]) @T.macro def combine( glse: T.Buffer([batch, heads, num_split], dtype), Output_partial: T.Buffer(part_shape, dtype), Output: T.Buffer(shape_o, dtype), ): with T.Kernel(heads, batch, threads=128) as (by, bz): po_local = T.alloc_fragment([dim], dtype) o_accum_local = T.alloc_fragment([dim], accum_dtype) lse_local = T.alloc_fragment([num_split, 1], dtype) lse_local_split = T.alloc_local([1], accum_dtype) lse_logsum_local = T.alloc_local([1], accum_dtype) lse_max_local = T.alloc_fragment([1], accum_dtype) scale_local = T.alloc_local([1], accum_dtype) T.annotate_layout({ lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i), }) T.clear(lse_logsum_local) T.clear(o_accum_local) for k in T.Parallel(num_split): lse_local[k, 0] = glse[bz, by, k] T.reduce_max(lse_local, lse_max_local, dim=0, clear=True) for k in T.Pipelined(num_split, num_stages=1): lse_local_split[0] = glse[bz, by, k] lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0]) lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0] for k in T.serial(num_split): for i in T.Parallel(dim): po_local[i] = Output_partial[bz, by, k, i] lse_local_split[0] = glse[bz, by, k] scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0]) for i in T.Parallel(dim): o_accum_local[i] += po_local[i] * scale_local[0] for i in T.Parallel(dim): Output[bz, by, i] = o_accum_local[i] @T.prim_func def main( Q: T.Buffer(shape_q, dtype), K: T.Buffer(shape_k, dtype), V: T.Buffer(shape_v, dtype), glse: T.Buffer([batch, heads, num_split], dtype), Output_partial: T.Buffer(part_shape, dtype), # [batch, heads, num_split, dim] Output: T.Buffer(shape_o, dtype), ): flash_attn_split(Q, K, V, glse, Output_partial) combine(glse, Output_partial, Output) return main def ref_program(query, key, value, glse, Output_partial): # """ # Inputs: # - query (Tensor): [batch, heads, dim] # - key (Tensor): [batch, seqlen_kv, kv_head_num, dim] # - value (Tensor): [batch, seqlen_kv, kv_head_num, dim] # Outputs: # - output (Tensor): [batch, heads, dim] # """ from einops import rearrange batch_size, query_heads, dim = query.shape # [batch_size, query_heads, dim] _, seqlen_kv, kv_heads, _ = key.shape # [batch_size, seqlen_kv, kv_heads, kv_dim] dim_v = value.shape[-1] assert kv_heads == 1, "kv_heads must be 1" query_expanded = rearrange(query, 'b h d -> b h 1 d') # [batch_size, query_heads, 1, dim] key_expanded = key.expand(-1, -1, query_heads, -1) # [batch_size, query_heads, seqlen_kv, dim] value_expanded = value.expand(-1, -1, query_heads, -1) # [batch_size, query_heads, seqlen_kv, dim] key_expanded = rearrange(key_expanded, 'b n h d -> b h n d') # [batch_size, kv_head_num, seqlen_kv, dim] value_expanded = rearrange(value_expanded, 'b n h d -> b h n d') # [batch_size, query_heads, seqlen_kv, dim] scores = torch.matmul(query_expanded, key_expanded.transpose(-1, -2)) # [batch_size, query_heads, 1, seqlen_kv] scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype)) attention_weights = F.softmax(scores, dim=-1) # [batch_size, query_heads, 1, seqlen_kv] output = torch.matmul(attention_weights, value_expanded) # [batch_size, query_heads, 1, dim] return output.view(batch_size, query_heads, dim_v) def flash_split_ref(Q, K, V): dim = 512 pe_dim = 64 batch = Q.size(0) nheads = Q.size(1) assert Q.size(2) == dim + pe_dim, "dim must be 576=512+64" block_N = 32 seqlen_kv = K.size(1) scale = (1.0 / (dim + pe_dim))**0.5 * 1.44269504 # log2(e) acc_s = torch.empty((batch, nheads, block_N), device="cuda", dtype=torch.float) acc_s_cast = torch.empty((batch, nheads, block_N), device="cuda", dtype=torch.float16) acc_o = torch.empty((batch, nheads, dim), device="cuda", dtype=torch.float) scores_max = torch.empty((batch, nheads), device="cuda", dtype=torch.float) scores_max_prev = torch.empty((batch, nheads), device="cuda", dtype=torch.float) scores_scale = torch.empty((batch, nheads), device="cuda", dtype=torch.float) scores_sum = torch.empty((batch, nheads), device="cuda", dtype=torch.float) logsum = torch.empty((batch, nheads), device="cuda", dtype=torch.float) gacc_o = torch.empty((num_split, batch, nheads, dim), device="cuda", dtype=torch.float) glogsum = torch.empty((num_split, batch, nheads), device="cuda", dtype=torch.float) Q_ = Q * scale K_ = K.expand(-1, -1, nheads, -1) V_ = V.expand(-1, -1, nheads, -1) for ks in range(num_split): acc_o.fill_(0) logsum.fill_(0) scores_max.fill_(float('-inf')) scores_max_prev.fill_(float('-inf')) for i in range(int((seqlen_kv // num_split) / block_N)): acc_s.fill_(0) acc_s = torch.einsum('bhd,bkhd->bhk', Q_, K_[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks + (i + 1) * block_N, :, :]) # [batch, nheads, block_N] scores_max_prev = scores_max scores_max = acc_s.max(dim=-1, keepdim=False).values # [batch, nheads] scores_scale = torch.exp2(scores_max_prev - scores_max) # [batch, nheads] acc_o *= scores_scale[:, :, None] acc_s = torch.exp2(acc_s - scores_max[:, :, None]) acc_s_cast = acc_s.to(torch.float16) # [batch, nheads, block_N] acc_o += torch.einsum( 'bhk,bkhd->bhd', acc_s_cast, V_[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks + (i + 1) * block_N, :, :]) scores_sum = acc_s.sum(dim=-1, keepdim=False) logsum = logsum * scores_scale + scores_sum acc_o /= logsum[:, :, None] logsum = torch.log2(logsum) + scores_max gacc_o[ks, :, :, :] = acc_o glogsum[ks, :, :] = logsum return glogsum.to(torch.float16).permute(1, 2, 0), gacc_o.to(torch.float16).permute(1, 2, 0, 3) def reduce_ref(Q, K, V, glse, Output_partial): o = torch.empty_like(Output_partial[:, :, 0, :]).fill_(0) lse_logsum = torch.empty_like(glse[:, :, 0]).fill_(0) lse_max = glse.max(dim=2, keepdim=False).values for ks in range(num_split): lse = glse[:, :, ks] lse_logsum += torch.exp2(lse - lse_max) lse_logsum = torch.log2(lse_logsum) + lse_max for ks in range(num_split): lse = glse[:, :, ks] scale = torch.exp2(lse - lse_logsum) o += Output_partial[:, :, ks, :] * scale[:, :, None] return o.to(torch.float16) if __name__ == "__main__": BATCH, H_Q, KV_H, KV_CTX, D_HEAD, DPE = 64, 128, 1, 8192, 512, 64 qk_flops = 2 * BATCH * H_Q * KV_CTX * (D_HEAD + DPE) pv_flops = 2 * BATCH * H_Q * KV_CTX * D_HEAD total_flops = qk_flops + pv_flops BLOCK_N = 32 # if D_HEAD <= 128 else 32 BLOCK_H = 64 program = flashattn(BATCH, H_Q, KV_H, KV_CTX, D_HEAD, DPE, BLOCK_N, BLOCK_H) mod, params = tilelang.lower(program) mod = tilelang.Profiler(mod, params, [5], tilelang.TensorSupplyType.Normal) mod.assert_allclose(ref_program, rtol=0.01, atol=0.01) latency = mod.do_bench(mod.func, warmup=500) print("Tile-lang: {:.2f} ms".format(latency)) print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))