#pragma once #ifndef __CUDACC_RTC__ #include #endif #include "common.h" namespace tl { enum class CacheHintSm90 : uint64_t { EVICT_NORMAL = 0x1000000000000000, EVICT_FIRST = 0x12F0000000000000, EVICT_LAST = 0x14F0000000000000, }; TL_DEVICE void tma_load(void *smem_ptr, void *gmem_ptr, uint64_t &smem_mbar, uint32_t size) { uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.shared::cluster.global.mbarrier::complete_tx::" "bytes [%0], [%1], %2, [%3]; \n" ::"r"(smem_int_ptr), "l"(gmem_ptr), "r"(size), "r"(smem_int_mbar) :); } TL_DEVICE void tma_load_multicast(void *smem_ptr, void *gmem_ptr, uint64_t &smem_mbar, uint32_t size, uint16_t mask) { uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile( "cp.async.bulk.shared::cluster.global.mbarrier::complete_tx::bytes." "multicast::cluster [%0], [%1], %2, [%3], %4; \n" ::"r"(smem_int_ptr), "l"(gmem_ptr), "r"(size), "r"(smem_int_mbar), "h"(mask) :); } template TL_DEVICE void tma_load(const CUtensorMap &descriptor, uint64_t &smem_mbar, void const *const smem_ptr, int32_t const &crd0) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.1d.shared::cluster.global.mbarrier::" "complete_tx::bytes.L2::cache_hint" " [%0], [%1, {%3}], [%2], %4;" : : "r"(smem_int_ptr), "l"(gmem_int_desc), "r"(smem_int_mbar), "r"(crd0), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_load(const CUtensorMap &descriptor, uint64_t &smem_mbar, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.2d.shared::cluster.global.mbarrier::" "complete_tx::bytes.L2::cache_hint" " [%0], [%1, {%3, %4}], [%2], %5;" : : "r"(smem_int_ptr), "l"(gmem_int_desc), "r"(smem_int_mbar), "r"(crd0), "r"(crd1), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_load(const CUtensorMap &descriptor, uint64_t &smem_mbar, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1, int32_t const &crd2) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.3d.shared::cluster.global.mbarrier::" "complete_tx::bytes.L2::cache_hint" " [%0], [%1, {%3, %4, %5}], [%2], %6;" : : "r"(smem_int_ptr), "l"(gmem_int_desc), "r"(smem_int_mbar), "r"(crd0), "r"(crd1), "r"(crd2), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_load(const CUtensorMap &descriptor, uint64_t &smem_mbar, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1, int32_t const &crd2, int32_t const &crd3) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.4d.shared::cluster.global.mbarrier::" "complete_tx::bytes.L2::cache_hint" " [%0], [%1, {%3, %4, %5, %6}], [%2], %7;" : : "r"(smem_int_ptr), "l"(gmem_int_desc), "r"(smem_int_mbar), "r"(crd0), "r"(crd1), "r"(crd2), "r"(crd3), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_load(const CUtensorMap &descriptor, uint64_t &smem_mbar, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1, int32_t const &crd2, int32_t const &crd3, int32_t const &crd4) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.5d.shared::cluster.global.mbarrier::" "complete_tx::bytes.L2::cache_hint" " [%0], [%1, {%3, %4, %5, %6, %7}], [%2], %8;" : : "r"(smem_int_ptr), "l"(gmem_int_desc), "r"(smem_int_mbar), "r"(crd0), "r"(crd1), "r"(crd2), "r"(crd3), "r"(crd4), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_load_im2col(const CUtensorMap &descriptor, uint64_t &smem_mbar, void const *const smem_ptr, int32_t const &coord_c, int32_t const &coord_w, int32_t const &coord_h, int32_t const &coord_n, uint16_t const &offset_w, uint16_t const &offset_h) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_mbar = smem_ptr_to_uint(&smem_mbar); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.4d.shared::cluster.global.im2col.mbarrier:" ":complete_tx::bytes.L2::cache_hint" " [%0], [%1, {%3, %4, %5, %6}], [%2], {%7, %8}, %9;" : : "r"(smem_int_ptr), "l"(gmem_int_desc), "r"(smem_int_mbar), "r"(coord_c), "r"(coord_w), "r"(coord_h), "r"(coord_n), "h"(offset_w), "h"(offset_h), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_store(const CUtensorMap &descriptor, void const *const smem_ptr, int32_t const &crd0) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.1d.global.shared::cta.bulk_group " ".L2::cache_hint [%0, {%2}], [%1], %3;" : : "l"(gmem_int_desc), "r"(smem_int_ptr), "r"(crd0), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_store(const CUtensorMap &descriptor, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.2d.global.shared::cta.bulk_group " ".L2::cache_hint [%0, {%2, %3}], [%1], %4;" : : "l"(gmem_int_desc), "r"(smem_int_ptr), "r"(crd0), "r"(crd1), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_store(const CUtensorMap &descriptor, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1, int32_t const &crd2) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.3d.global.shared::cta.bulk_group " ".L2::cache_hint [%0, {%2, %3, %4}], [%1], %5;" : : "l"(gmem_int_desc), "r"(smem_int_ptr), "r"(crd0), "r"(crd1), "r"(crd2), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_store(const CUtensorMap &descriptor, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1, int32_t const &crd2, int32_t const &crd3) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.4d.global.shared::cta.bulk_group " ".L2::cache_hint [%0, {%2, %3, %4, %5}], [%1], %6;" : : "l"(gmem_int_desc), "r"(smem_int_ptr), "r"(crd0), "r"(crd1), "r"(crd2), "r"(crd3), "l"(cache_hint) : "memory"); } template TL_DEVICE void tma_store(const CUtensorMap &descriptor, void const *const smem_ptr, int32_t const &crd0, int32_t const &crd1, int32_t const &crd2, int32_t const &crd3, int32_t const &crd4) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); uint32_t smem_int_ptr = smem_ptr_to_uint(smem_ptr); asm volatile("cp.async.bulk.tensor.5d.global.shared::cta.bulk_group " ".L2::cache_hint [%0, {%2, %3, %4, %5, %6}], [%1], %7;" : : "l"(gmem_int_desc), "r"(smem_int_ptr), "r"(crd0), "r"(crd1), "r"(crd2), "r"(crd3), "r"(crd4), "l"(cache_hint) : "memory"); } TL_DEVICE void prefetch_tma_descriptor(const CUtensorMap &descriptor) { uint64_t gmem_int_desc = reinterpret_cast(&descriptor); asm volatile("prefetch.tensormap [%0];" : : "l"(gmem_int_desc) : "memory"); } TL_DEVICE void mbarrier_init(uint64_t &smem_barrier, uint32_t arrive_count) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); asm volatile("mbarrier.init.shared.b64 [%1], %0;" : : "r"(arrive_count), "r"(smem_int_ptr)); } TL_DEVICE uint32_t mbarrier_try_wait(uint64_t &smem_barrier, int phase_bit) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); uint32_t waitComplete; asm volatile("{\n\t" ".reg .pred P1; \n\t" "mbarrier.try_wait.parity.shared.b64 P1, [%1], %2; \n\t" "selp.b32 %0, 1, 0, P1; \n\t" "}" : "=r"(waitComplete) : "r"(smem_int_ptr), "r"(phase_bit)); return waitComplete; } TL_DEVICE void mbarrier_wait(uint64_t &smem_barrier, int phase_bit) { if (mbarrier_try_wait(smem_barrier, phase_bit) == 0) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); // Arbitrarily large timer value after which try-wait expires and re-tries. uint32_t ticks = 0x989680; asm volatile("{\n\t" ".reg .pred P1; \n\t" "LAB_WAIT: \n\t" "mbarrier.try_wait.parity.shared.b64 P1, [%0], %1, %2; \n\t" "@P1 bra DONE; \n\t" "bra LAB_WAIT; \n\t" "DONE: \n\t" "}" : : "r"(smem_int_ptr), "r"(phase_bit), "r"(ticks)); } } TL_DEVICE void mbarrier_test_wait(uint64_t &smem_barrier, int phase_bit) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); asm volatile( "{\n" ".reg .pred P1;\n" "LAB_WAIT:\n" "mbarrier.test_wait.parity.shared::cta.b64 P1, [%0], %1;\n" "@P1 bra.uni DONE;\n" "nanosleep.u32 5;\n" // wait a few nanoseconds on pre-Hopper architectures // to save instruction issue slots "bra.uni LAB_WAIT;\n" "DONE:\n" "}\n" ::"r"(smem_int_ptr), "r"(phase_bit)); } TL_DEVICE void mbarrier_arrive(uint64_t &smem_barrier) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); asm volatile("mbarrier.arrive.shared.b64 _, [%0];" : : "r"(smem_int_ptr)); } TL_DEVICE void mbarrier_arrive(uint64_t &smem_barrier, int cta_id, uint32_t pred) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); if (pred) { asm volatile("{\n\t" ".reg .b32 remAddr32;\n\t" "mapa.shared::cluster.u32 remAddr32, %0, %1;\n\t" "mbarrier.arrive.shared::cluster.b64 _, [remAddr32];\n\t" "}" : : "r"(smem_int_ptr), "r"(cta_id)); } } TL_DEVICE void mbarrier_expect_tx(uint64_t &smem_barrier, uint32_t transaction_bytes) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); asm volatile("mbarrier.expect_tx.shared.b64 [%1], %0;" : : "r"(transaction_bytes), "r"(smem_int_ptr)); } TL_DEVICE void mbarrier_arrive_expect_tx(uint64_t &smem_barrier, uint32_t transaction_bytes) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); asm volatile("mbarrier.arrive.expect_tx.shared.b64 _, [%1], %0;" : : "r"(transaction_bytes), "r"(smem_int_ptr)); } TL_DEVICE void mbarrier_cp_async_arrive(uint64_t &smem_barrier) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); asm volatile("cp.async.mbarrier.arrive.shared.b64 [%0];" : : "r"(smem_int_ptr)); } TL_DEVICE void fence_proxy_async() { asm volatile("fence.proxy.async.shared::cta;" : :); } // Indicate arrival of warp issuing TMA_STORE TL_DEVICE void tma_store_arrive() { asm volatile("cp.async.bulk.commit_group;"); } template TL_DEVICE void tma_store_wait() { asm volatile("cp.async.bulk.wait_group.read %0;" : : "n"(Count) : "memory"); } TL_DEVICE void syncthreads_partial(uint64_t &smem_barrier) { uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier); uint64_t state = 0; asm volatile("{\n" ".reg .pred P1;\n" "mbarrier.arrive.shared.b64 %1, [%0];\n" "LAB_WAIT:\n" "mbarrier.try_wait.shared.b64 P1, [%0], %1;\n" "@!P1 bra.uni LAB_WAIT;\n" "}\n" : : "r"(smem_int_ptr), "l"(state)); } template TL_DEVICE void warpgroup_reg_alloc() { asm volatile("setmaxnreg.inc.sync.aligned.u32 %0;\n" : : "n"(RegCount)); } template TL_DEVICE void warpgroup_reg_dealloc() { asm volatile("setmaxnreg.dec.sync.aligned.u32 %0;\n" : : "n"(RegCount)); } } // namespace tl