import tilelang import tilelang.language as T import torch torch.random.manual_seed(0) def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): block_mask_shape = (M // block_M, N // block_N, K // block_K) @T.prim_func def main( A: T.Buffer((M, K), dtype), B: T.Buffer((K, N), dtype), BlockMask: T.Buffer(block_mask_shape, "bool"), C: T.Buffer((M, N), dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_K, block_N), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=2): if BlockMask[by, bx, k]: T.copy(A[by * block_M, k * block_K], A_shared) T.copy(B[k * block_K, bx * block_N], B_shared) T.gemm(A_shared, B_shared, C_local) T.copy(C_local, C[by * block_M, bx * block_N]) return main func = matmul(1024, 1024, 1024, 128, 128, 32) print(func) kernel = tilelang.compile(func, out_idx=-1) a = torch.randn(1024, 1024).cuda().half() b = torch.randn(1024, 1024).cuda().half() # block_mask = torch.zeros(1024 // 128, 1024 // 128, 1024 // 32).cuda().bool() # block_mask = torch.ones(1024 // 128, 1024 // 128, 1024 // 32).cuda().bool() # random mask block_mask = torch.randint(0, 2, (1024 // 128, 1024 // 128, 1024 // 32)).cuda().bool() c = kernel(a, b, block_mask) ref_c = torch.zeros_like(c) for i in range(1024 // 128): for j in range(1024 // 128): accu = torch.zeros((128, 128), dtype=torch.float32, device=a.device) for k in range(1024 // 32): if block_mask[i, j, k]: accu += ( a[i * 128:(i + 1) * 128, k * 32:(k + 1) * 32].to(torch.float32) @ b[k * 32:(k + 1) * 32, j * 128:(j + 1) * 128].to(torch.float32)) ref_c[i * 128:(i + 1) * 128, j * 128:(j + 1) * 128] = accu.to(torch.float16) # ref_c = a @ b print(c) print(ref_c) torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2) print(kernel.get_kernel_source())