import tilelang from tilelang import Profiler import tilelang.language as T def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): @T.prim_func def main( A: T.Tensor((M, K), dtype), B: T.Tensor((K, N), dtype), C: T.Tensor((M, N), dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_K, block_N), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) # Enable rasterization for better L2 Cache Locality T.use_swizzle(panel_size=10) # Clear the local buffer T.clear(C_local) # Auto pipeline the computation for ko in T.Pipelined(T.ceildiv(K, block_K), num_stages=3): T.copy(A[by * block_M, ko * block_K], A_shared) # Instead of using # T.copy(B[k * block_K, bx * block_N], B_shared) # we can also use Parallel to auto map the thread # bindings and vectorize the copy operation. for k, j in T.Parallel(block_K, block_N): B_shared[k, j] = B[ko * block_K + k, bx * block_N + j] T.gemm(A_shared, B_shared, C_local) T.copy(C_local, C[by * block_M, bx * block_N]) return main func = matmul(1024, 1024, 1024, 128, 128, 32) print(func) artifact = tilelang.lower(func) profiler = Profiler(artifact.rt_mod, artifact.params, result_idx=[2]) import torch a = torch.randn(1024, 1024).cuda().half() b = torch.randn(1024, 1024).cuda().half() c = profiler(a, b) ref_c = a @ b print(c) print(ref_c) torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2) # Get CUDA Source print(artifact.kernel_source)