# Mamba2_chunk_scan Benchmark This document records the throughput achieved by `benchmark_mamba_chunk_scan.py` when computing `batch = 8`, `heads = 80`, `groups = 1`, `chunk_size = 256`, `dim = 64`, and `dstate = 128` across different `seq_len` using the default autotuning search space. ## Environment - Repository commit: `8a5eb569704bfea64478c29adcfe3a09e3c2b12c` - GPUs: `NVIDIA H800 SXM` on driver `560.35.05` ## How to Reproduce ```bash cd benchmark/mamba2 python - <<'PY' from benchmark_mamba_chunk_scan import chunk_scan_fwd batch = 8 heads = 80 groups = 1 chunk_size = 256 dim = 64 dstate = 128 for seq_len in [1024, 2048, 4096, 8192, 16384, 32768]: res = chunk_scan_fwd( batch, seq_len, chunk_size, groups, heads, dim, dstate) tflops = (2 * batch * seq_len * chunk_size * heads * dim * 0.5 + 2 * batch * seq_len * heads * dim * dstate) / res.latency * 1e-9 print(f"seq_len={seq_len:5d} latency={res.latency:.6f}ms TFlops={tflops:.3f}") PY ``` ## Results | Seq_len| Latency (ms) | Throughput (TFLOPs) | |-------|-------------|---------------------| | 1024 | 0.169 | 126.477 | | 2048 | 0.329 | 130.195 | | 4096 | 0.645 | 133.054 | | 8192 | 1.278 | 134.362 | | 16384 | 2.531 | 135.711 | | 32768 | 5.076 | 135.379 | ## Compare with Baselines - Triton: v3.5.0, mamba-ssm: v2.2.6.post3 - Helion: v0.2.1
Mamba2_chunk_scan Performance Comparison on H100
Performance comparison across compilers on NVIDIA H100