#pragma once #ifndef __CUDACC_RTC__ #include #endif #include #include #include #include using cutlass::bfloat16_t; using cutlass::half_t; using cutlass::tfloat32_t; using int4_t = int4; #define hexp cutlass::fast_exp #define hlog cutlass::fast_log #define hsqrt cutlass::fast_sqrt #define hsin cutlass::fast_sin #define hcos cutlass::fast_cos #define htanh cutlass::fast_tanh #define hpow powf #define uint unsigned int #define uchar unsigned char #define ushort unsigned short #define TL_DEVICE __forceinline__ __device__ #define TL_DEVICE_NOINLINE __noinline__ __device__ #define TL_PATCH #define TILELANG_CHECK(stmt) \ do { \ cudaError_t __err = (stmt); \ if (__err != cudaSuccess) { \ snprintf(error_buf, ERROR_BUF_SIZE, "%s:%d: %s - %s", __FILE__, \ __LINE__, cudaGetErrorName(__err), cudaGetErrorString(__err)); \ return -1; \ } \ } while (0) #define TILELANG_CHECK_LAST_ERROR(kernel_name) \ do { \ cudaError_t __err = cudaGetLastError(); \ if (__err != cudaSuccess) { \ snprintf(error_buf, ERROR_BUF_SIZE, kernel_name ": %s - %s", \ cudaGetErrorName(__err), cudaGetErrorString(__err)); \ return -1; \ } \ } while (0) // abs function for bfloat_t and half_t since there is no implicit conversion // method TL_PATCH TL_DEVICE half_t __habs(const half_t x) { return half_t(__habs(x.to_half())); } // hrsqrt function for half_t TL_PATCH TL_DEVICE half_t hrsqrt(const half_t x) { return half_t(hrsqrt(x.to_half())); } // Pack two half values. TL_DEVICE unsigned __pack_half2(const half x, const half y) { unsigned v0 = *((unsigned short *)&x); unsigned v1 = *((unsigned short *)&y); return (v1 << 16) | v0; } // Pack two half_t values. TL_DEVICE unsigned __pack_half2(const half_t x, const half_t y) { unsigned v0 = *((unsigned short *)&x); unsigned v1 = *((unsigned short *)&y); return (v1 << 16) | v0; } // Pack two bfloat16_t values. TL_DEVICE unsigned __pack_half2(const bfloat16_t x, const bfloat16_t y) { unsigned v0 = *((unsigned short *)&x); unsigned v1 = *((unsigned short *)&y); return (v1 << 16) | v0; } // Pack two bfloat16_t values. TL_DEVICE unsigned __pack_nv_bfloat162(const bfloat16_t x, const bfloat16_t y) { unsigned v0 = *((unsigned short *)&x); unsigned v1 = *((unsigned short *)&y); return (v1 << 16) | v0; } // Pack four char values TL_DEVICE int make_int(signed char x0, signed char x1, signed char x2, signed char x3) { return (x3 << 24) | (x2 << 16) | (x1 << 8) | x0; } // Pack sixteen char values. TL_DEVICE int4_t make_int4(signed char x0, signed char x1, signed char x2, signed char x3, signed char y0, signed char y1, signed char y2, signed char y3, signed char z0, signed char z1, signed char z2, signed char z3, signed char w0, signed char w1, signed char w2, signed char w3) { int4_t result; result.x = make_int(x0, x1, x2, x3); result.y = make_int(y0, y1, y2, y3); result.z = make_int(z0, z1, z2, z3); result.w = make_int(w0, w1, w2, w3); return result; } // Helper to cast SMEM pointer to unsigned TL_DEVICE uint32_t smem_ptr_to_uint(void const *const ptr) { return static_cast(__cvta_generic_to_shared(ptr)); } /** * Convert a shared-memory pointer to a 32-bit unsigned integer address. * * Casts the given pointer (expected to reference shared memory) into a 32-bit * unsigned integer using the device address-space conversion required for * shared-memory pointers. * * @param smem_ptr Pointer into shared memory. * @return 32-bit unsigned integer representation of the shared-memory address. * * @note The pointer must refer to shared memory; behavior is undefined for * pointers in other address spaces. */ TL_DEVICE unsigned int cast_smem_ptr_to_int(const void *const smem_ptr) { unsigned int smem_int; asm volatile("{ .reg .u64 smem_int; cvta.to.shared.u64 smem_int, %1; " "cvt.u32.u64 %0, smem_int; }" : "=r"(smem_int) : "l"(smem_ptr)); return smem_int; } template struct normalize_atomic_type { using type = T; }; template <> /** * Map the public half_t alias to the native `half` type for atomic * operations. * * Used by the atomic utilities to normalize externally exposed * typedefs (e.g., Cutlass half_t) to the compiler's native `half` * representation so correct atomic intrinsics or `cuda::atomic_ref` * specializations can be selected. */ struct normalize_atomic_type { using type = half; }; #if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750)) template <> struct normalize_atomic_type { using type = __nv_bfloat16; }; #endif template TL_DEVICE T1 cuda_cast(T2 val) { return T1(val); } template <> TL_DEVICE half cuda_cast(float val) { return __float2half(val); } #if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750)) template <> TL_DEVICE __nv_bfloat16 cuda_cast<__nv_bfloat16, float>(float val) { return __float2bfloat16(val); } #endif template TL_DEVICE void AtomicMax(T1 *address, T2 val, int memory_order = int(cuda::memory_order_relaxed)) { using NT1 = typename normalize_atomic_type::type; if constexpr (std::is_same_v || std::is_same_v) { atomicMax(reinterpret_cast(address), static_cast(val)); } else { cuda::atomic_ref aref(*address); aref.fetch_max(cuda_cast(val), cuda::memory_order(memory_order)); } } template TL_DEVICE void AtomicMin(T1 *address, T2 val, int memory_order = int(cuda::memory_order_relaxed)) { using NT1 = typename normalize_atomic_type::type; if constexpr (std::is_same_v || std::is_same_v) { atomicMin(reinterpret_cast(address), static_cast(val)); } else { cuda::atomic_ref aref(*address); aref.fetch_min(cuda_cast(val), cuda::memory_order(memory_order)); } } template TL_DEVICE void AtomicAdd(T1 *address, T2 val, int memory_order = int(cuda::memory_order_relaxed)) { using NT1 = typename normalize_atomic_type::type; if constexpr (std::is_same_v || std::is_same_v) { atomicAdd(reinterpret_cast(address), static_cast(val)); } else { cuda::atomic_ref aref(*address); aref.fetch_add(cuda_cast(val), cuda::memory_order(memory_order)); } } // AtomicAdd Functions for FP16x2 TL_DEVICE void AtomicAddx2(half_t *address, half_t *val) { atomicAdd(reinterpret_cast(address), static_cast(*reinterpret_cast(val))); } #if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750)) // AtomicAdd Functions for BFLOAT16x2 TL_DEVICE void AtomicAddx2(bfloat16_t *address, bfloat16_t *val) { atomicAdd( reinterpret_cast<__nv_bfloat162 *>(address), static_cast<__nv_bfloat162>(*reinterpret_cast<__nv_bfloat162 *>(val))); } #endif #if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 900)) // AtomicAdd Functions for FLOAT16x2 TL_DEVICE void AtomicAddx2(float *address, float *val) { atomicAdd(reinterpret_cast(address), static_cast(*reinterpret_cast(val))); } // AtomicAdd Functions for FLOAT16x4 TL_DEVICE void AtomicAddx4(float *address, float *val) { atomicAdd(reinterpret_cast(address), static_cast(*reinterpret_cast(val))); } #endif template TL_DEVICE T AtomicLoad(T *address, int memory_order) { cuda::atomic_ref aref(*address); return aref.load(cuda::memory_order(memory_order)); } template TL_DEVICE /** * Atomically stores a value into the given address using the * specified memory ordering. * * The value is converted to the normalized atomic storage type for T1 * before being stored (for example, vectorized or reduced-width types * such as FP16/BF16 are mapped to their underlying hardware * representation). `memory_order` must be an `int` representation of * a `cuda::memory_order` value (e.g., * `int(cuda::memory_order_relaxed)`). * * @param address Pointer to the destination atomic object. * @param value Value to store; will be cast to the atomic storage * type. * @param memory_order Memory ordering for the atomic store (as an * `int`-cast `cuda::memory_order`). */ void AtomicStore(T1 *address, T2 value, int memory_order) { using NT1 = typename normalize_atomic_type::type; cuda::atomic_ref aref(*address); aref.store(cuda_cast(value), cuda::memory_order(memory_order)); } // DP4A template TL_DEVICE /** * Compute a 4×8-bit dot-product-accumulate using the CUDA DP4A * intrinsic. * * Reads 32-bit packed values from `a` and `b` (each containing four * signed 8-bit lanes), applies the __dp4a operation (dot product of * the four lane pairs added to an accumulator), and stores the 32-bit * integer result through `c`. * * @param a Pointer to a 32-bit packed input containing four signed * 8-bit elements. * @param b Pointer to a 32-bit packed input containing four signed * 8-bit elements. * @param c Pointer to a 32-bit accumulator; its current value is used * as the initial accumulator and overwritten with the resulting int32 * sum. */ void DP4A(InDatatype *a, InDatatype *b, OutDatatype *c) { const int a_int = *((int *)a); const int b_int = *((int *)b); const int c_int = *((int *)c); *c = __dp4a(a_int, b_int, c_int); } namespace tl { // Any template TL_DEVICE bool Any(T *a, int size) { for (int i = 0; i < size; i++) { if (a[i]) { return true; } } return false; } // All template TL_DEVICE bool All(T *a, int size) { for (int i = 0; i < size; i++) { if (!a[i]) { return false; } } return true; } // Pow of int template TL_DEVICE T pow_of_int(T x) { T result = x; for (int i = 1; i < y; i++) { result *= x; } return result; } // Thread partial barrier synchronization // https://docs.nvidia.com/cuda/parallel-thread-execution/#memory-consistency-model template TL_DEVICE void __sync_thread_partial() { asm volatile("bar.sync %0, %1;" : : "r"(barrier_id), "r"(thread_count)); } } // namespace tl namespace cutlass { TL_DEVICE bfloat16_t fast_exp(bfloat16_t x) { return ::hexp(x); } } // namespace cutlass