import torch import tilelang import tilelang.language as T tilelang.disable_cache() def matmul( M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads, ): A_shape = (K, M) if trans_A else (M, K) B_shape = (N, K) if trans_B else (K, N) A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K) B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N) @T.prim_func def main( A: T.Tensor(A_shape, in_dtype), B: T.Tensor(B_shape, in_dtype), C: T.Tensor((M, N), out_dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared(A_shared_shape, in_dtype) B_shared = T.alloc_shared(B_shared_shape, in_dtype) C_tmem = T.alloc_tmem([block_M, block_N], accum_dtype) mbar = T.alloc_barrier(1) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) C_shared = T.alloc_shared((block_M, block_N), out_dtype) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages): T.copy(A[by * block_M, k * block_K], A_shared) T.copy(B[bx * block_N, k * block_K], B_shared) T.gemm( A_shared, B_shared, C_tmem, trans_A, trans_B, mbar=mbar, wg_wait=-1, clear_accum=k == 0) T.mbarrier_wait_parity(mbar, k % 2) T.copy(C_tmem, C_local) T.copy(C_local, C_shared) T.copy(C_shared, C[by * block_M, bx * block_N]) return main M, N, K = 4096, 4096, 8192 block_M, block_N, block_K = 128, 256, 128 trans_A, trans_B = False, True in_dtype, out_dtype, accum_dtype = "bfloat16", "bfloat16", "float" num_stages = 2 threads = 256 func = matmul(M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads) jit_kernel = tilelang.compile( func, out_idx=[2], target="cuda", pass_configs={ tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True, tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, }) print(jit_kernel.get_kernel_source()) a = torch.randn(M, K, device="cuda", dtype=torch.bfloat16) b = torch.randn(N, K, device="cuda", dtype=torch.bfloat16) c = jit_kernel(a, b) ref_c = (a.to(torch.float) @ b.T.to(torch.float)).to(torch.bfloat16) torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2) profiler = jit_kernel.get_profiler() latency = profiler.do_bench() print(f"Latency: {latency} ms") print(f"Flops: {2 * M * N * K / (latency/1e3) / 1e12} TFLOPS")