import torch import tilelang import tilelang.testing import tilelang.language as T def matmul(M, N, K, block_M, block_N, block_K, threads, dtype="float16", accum_dtype="float"): @T.prim_func def main( A: T.Tensor((M, K), dtype), B: T.Tensor((K, N), dtype), C: T.Tensor((M, N), dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_K, block_N), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=3): T.copy(A[by * block_M, k * block_K], A_shared) T.copy(B[k * block_K, bx * block_N], B_shared) T.gemm(A_shared, B_shared, C_local, policy=T.GemmWarpPolicy.FullCol) T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_gemm_threads_test(threads, M=1024, N=192, K=1024, block_M=64, block_N=192, block_K=32): func = matmul(M, N, K, block_M, block_N, block_K, threads) jit_kernel = tilelang.compile(func, out_idx=-1, target="cuda") torch.manual_seed(0) a = torch.randn(M, K, device="cuda", dtype=torch.float16) b = torch.randn(K, N, device="cuda", dtype=torch.float16) ref_c = a @ b c = jit_kernel(a, b) tilelang.testing.torch_assert_close(c, ref_c, rtol=1e-2, atol=1e-2) @tilelang.testing.requires_cuda @tilelang.testing.requires_cuda_compute_version(9, 0) def test_gemm_threads_2wgs(): run_gemm_threads_test(128 * 2) @tilelang.testing.requires_cuda @tilelang.testing.requires_cuda_compute_version(9, 0) def test_gemm_threads_4wgs(): run_gemm_threads_test(128 * 4) if __name__ == "__main__": tilelang.testing.main()