# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from tilelang import tvm as tvm import tilelang as tl import tilelang.language as T import tilelang.testing def modify( with_B: bool = False, with_bias: bool = False, ): @T.prim_func def main( A: T.Buffer((64, 64)), B: T.Buffer((64, 64)), C: T.Buffer((64, 64)), D: T.Buffer((64, 64)), bias: T.Buffer((64, 64)), ): if with_B: if with_bias: T.gemm(A, bias, D) T.gemm(A, B, D) else: with T.block(): A_shared = T.alloc_shared((64, 64), dtype="float32") C_shared = T.alloc_shared((64, 64), dtype="float32") D_shared = T.alloc_shared((64, 64), dtype="float32") T.copy(A, A_shared) T.copy(C, C_shared) T.gemm(A_shared, C_shared, D_shared) T.copy(D_shared, D) return main def test_modify(with_B=False, with_bias=False): tester = modify(with_B=with_B, with_bias=with_bias) mod = tvm.IRModule({tester.attrs["global_symbol"]: tester}) mod2 = tl.transform.Simplify()(mod) assert mod != mod2 def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): @T.prim_func def main( a: T.handle, b: T.handle, c: T.handle, ): A = T.match_buffer(a, (M, K), dtype=dtype) B = T.match_buffer(b, (K, N), dtype=dtype) C = T.match_buffer(c, (M, N), dtype=accum_dtype) with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_K, block_N), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=3): T.copy(A[by * block_M, k * block_K], A_shared) T.copy(B[k * block_K, bx * block_N], B_shared) T.gemm(A_shared, B_shared, C_local) T.copy(C_local, C[by * block_M, bx * block_N]) return main def test_matmul(): func = matmul(1024, 1024, 1024, 128, 128, 32) mod = tvm.IRModule({func.attrs["global_symbol"]: func}) mod = tl.transform.Simplify()(mod) rt_mod, params = tl.lower(mod.functions_items()[0][1], runtime_only=False) # TODO Profiler only support TensorType, not dynamic variable profiler = tl.Profiler(rt_mod, params, result_idx=[2]) import torch a = torch.randn(1024, 1024, dtype=torch.float16).cuda().half() b = torch.randn(1024, 1024, dtype=torch.float16).cuda().half() c = profiler(a, b) ref_c = a @ b ref_c = ref_c.float() torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2) # Get CUDA Source # print(rt_mod.imported_modules[0].get_source()) if __name__ == "__main__": tilelang.testing.main()