# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ruff: noqa from typing import Optional import torch import torch.nn.functional as F from einops import rearrange, repeat def naive_nsa(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, block_indices: torch.LongTensor, block_counts: torch.LongTensor, block_size: int = 64, scale: Optional[float] = None, head_first: bool = False, cu_seqlens: Optional[torch.LongTensor] = None) -> torch.Tensor: r""" Args: q (torch.Tensor): queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`. k (torch.Tensor): keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`. GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16. v (torch.Tensor): values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`. block_indices (torch.LongTensor): Block indices of shape `[B, T, H, S]` if `head_first=False` else `[B, H, T, S]`. `S` is the maximum number of selected blocks for each query token, which is set to 16 in the paper. block_counts (torch.LongTensor): Block counts of shape `[B, T, H]` if `head_first=False` else `[B, H, T]`. block_size (int): Selected block size. Default: 64. scale (Optional[int]): Scale factor for attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. head_first (Optional[bool]): Whether the inputs are in the head-first format. Default: `False`. cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape `[N+1]` used for variable-length training, consistent with the FlashAttention API. Returns: o (torch.Tensor): Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`. """ if scale is None: scale = k.shape[-1]**-0.5 if cu_seqlens is not None: if head_first: raise RuntimeError( "Sequences with variable lengths are not supported for head-first mode") if head_first: q, k, v, block_indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'), (q, k, v, block_indices)) block_counts = rearrange(block_counts, 'b h t -> b t h') dtype = q.dtype G = q.shape[2] // k.shape[2] BS = block_size S = block_indices.shape[-1] k, v, block_indices = (repeat(x, 'b t h d -> b t (h g) d', g=G) for x in (k, v, block_indices)) block_counts = repeat(block_counts, 'b t h -> b t (h g)', g=G) c = torch.arange(S).repeat_interleave(BS).unsqueeze(1).expand(-1, q.shape[2]).to(q.device) q, k, v = map(lambda x: x.float(), (q, k, v)) o = torch.zeros_like(v) varlen = True if cu_seqlens is None: varlen = False B, T = q.shape[:2] cu_seqlens = torch.cat( [block_indices.new_tensor(range(0, B * T, T)), block_indices.new_tensor([B * T])]) for i in range(len(cu_seqlens) - 1): if not varlen: q_b, k_b, v_b, i_b, s_b = q[i], k[i], v[i], block_indices[i], block_counts[i] else: T = cu_seqlens[i + 1] - cu_seqlens[i] q_b, k_b, v_b, i_b, s_b = map(lambda x: x[0][cu_seqlens[i]:cu_seqlens[i + 1]], (q, k, v, block_indices, block_counts)) i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS)) # [T, S*BS, HQ] i_b = i_b.view(T, block_indices.shape[2], -1).transpose(1, 2) for i_q in range(T): # [HQ, D] q_i = q_b[i_q] * scale # [S*BS, HQ] i_i = i_b[i_q] # [1, HQ] s_i = s_b[i_q] # [S*BS, HQ, -1] k_i, v_i = map( lambda x: x.gather( 0, i_i.clamp(0, T - 1).unsqueeze(-1).expand(*i_i.shape, x.shape[-1])), (k_b, v_b)) # [S*BS, HQ] attn = torch.einsum('h d, n h d -> n h', q_i, k_i).masked_fill((i_i > i_q) | (c >= s_i), float('-inf')).softmax(0) if not varlen: o[i, i_q] = torch.einsum('n h, n h v -> h v', attn, v_i) else: o[0][cu_seqlens[i] + i_q] = torch.einsum('n h, n h v -> h v', attn, v_i) if head_first: o = rearrange(o, 'b t h d -> b h t d') return o.to(dtype)