import tilelang import tilelang.language as T import torch def make_matmul_prim(M, N, K, block_M=128, block_N=128, block_K=32, dtype="float16", accum_dtype="float"): @T.prim_func def main( A: T.Tensor((M, K), dtype), B: T.Tensor((K, N), dtype), C: T.Tensor((M, N), dtype), ): with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_K, block_N), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for ko in T.Pipelined(T.ceildiv(K, block_K), num_stages=0): T.copy(A[by * block_M, ko * block_K], A_shared) T.copy(B[ko * block_K, bx * block_N], B_shared) T.gemm(A_shared, B_shared, C_local) T.copy(C_local, C[by * block_M, bx * block_N]) return main def build_matmul_kernel(M=1024, N=1024, K=1024, target="cuda"): """Compile and return a callable kernel that takes (A, B) and returns C.""" if target.startswith("cuda") and not torch.cuda.is_available(): raise RuntimeError("CUDA is not available; cannot build CUDA kernel for host-check repros.") prim = make_matmul_prim(M, N, K) # out_idx=[2] means the 3rd param C is treated as output; wrapper takes (A,B) return tilelang.compile(prim, out_idx=[2], target=target) def build_scalar_check_kernel(target="cuda"): @T.prim_func def scalar_check(x: T.int32, flag: T.bool()): T.evaluate(0) return tilelang.compile(scalar_check, target=target)