import torch import tilelang as tl import tilelang.language as T from tilelang.profiler import do_bench import argparse @tl.jit(out_idx=3, pass_configs={"tl.disable_tma_lower": True, "tl.disable_warp_specialized": True}) def chunk_retention_fwd_kernel( B, S, H, DK, DV, dtype: str = 'float16', scale: float = None, ) -> torch.Tensor: if scale is None: scale = DK**-0.5 accum_dtype = 'float' chunk_size = 64 BK = BV = 64 # Set to 128 can be faster, but has some numerical differences with FLA assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0 NK = tl.cdiv(DK, BK) NV = tl.cdiv(DV, BV) NT = tl.cdiv(S, chunk_size) @T.prim_func def chunk_retention_fwd( Q: T.Tensor([B, S, H, DK], dtype), # type: ignore K: T.Tensor([B, S, H, DK], dtype), # type: ignore V: T.Tensor([B, S, H, DV], dtype), # type: ignore O: T.Tensor([NK, B, S, H, DV], dtype), # type: ignore ): with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh): i_b = i_bh // H i_h = i_bh % H log_decay = T.alloc_var('float32') log_decay = T.log2(1 - T.exp2(-5. - 1. * i_h)) # Head-specific log decay q = T.alloc_shared([chunk_size, BK], dtype) k = T.alloc_shared([chunk_size, BK], dtype) v = T.alloc_shared([chunk_size, BV], dtype) h = T.alloc_fragment([BK, BV], accum_dtype) h_shared = T.alloc_shared([BK, BV], dtype) s = T.alloc_fragment([chunk_size, chunk_size], accum_dtype) s_shared = T.alloc_shared([chunk_size, chunk_size], dtype) o = T.alloc_fragment([chunk_size, BV], accum_dtype) T.clear(h) T.annotate_layout({ q: tl.layout.make_swizzled_layout(q), k: tl.layout.make_swizzled_layout(k), v: tl.layout.make_swizzled_layout(v), h_shared: tl.layout.make_swizzled_layout(h_shared), s_shared: tl.layout.make_swizzled_layout(s_shared), }) T.use_swizzle(10) for i in T.Pipelined(0, NT): for row, col in T.Parallel(chunk_size, BK): q[row, col] = Q[i_b, i * chunk_size + row, i_h, i_k * BK + col] * scale T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k) T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v) T.gemm(q, k, s, clear_accum=True, transpose_B=True) for row, col in T.Parallel(chunk_size, chunk_size): s_shared[row, col] = T.if_then_else(row >= col, s[row, col] * T.exp2( (row - col) * log_decay), 0) T.copy(h, h_shared) T.gemm(q, h_shared, o, clear_accum=True) for row, col in T.Parallel(chunk_size, BV): o[row, col] = T.exp2((row + 1) * log_decay) * o[row, col] T.gemm(s_shared, v, o) for row, col in T.Parallel(chunk_size, BV): v[row, col] = v[row, col] * T.exp2((chunk_size - row - 1) * log_decay) for row, col in T.Parallel(BK, BV): h[row, col] = T.exp2(chunk_size * log_decay) * h[row, col] T.copy( o, O[i_k, i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV]) T.gemm(k, v, h, transpose_A=True) return chunk_retention_fwd def postprocess(o): return o if o.size(0) == 1 else o.sum(0) def main(): parser = argparse.ArgumentParser() parser.add_argument('--B', type=int, default=8, help='Batch size') parser.add_argument('--S', type=int, default=4096, help='Seq len') parser.add_argument('--H', type=int, default=32, help='Num heads') parser.add_argument('--D', type=int, default=128, help='Head dim') args = parser.parse_args() B, S, H, D = args.B, args.S, args.H, args.D total_flops = 2.0 * B * S * S * H * D # causal q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16) k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16) v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16) kernel = chunk_retention_fwd_kernel(B, S, H, D, D) t = do_bench(lambda: postprocess(kernel(q, k, v)), warmup=25, rep=100) print(f'Tilelang latency: {t:.3f} ms') print(f'Tilelang TFLOPs: {total_flops/t * 1e-9}') if __name__ == '__main__': main()