import torch from tilelang import tvm as tvm import tilelang.testing import tilelang as tl import tilelang.language as T from tilelang.utils import map_torch_type @tl.jit def tensor_null_test(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float", with_bias=False): @T.prim_func def main( A: T.Tensor((M, K), dtype), B: T.Tensor((K, N), dtype), C: T.Tensor((M, N), accum_dtype), Bias: T.Tensor((N), accum_dtype), ): # Initialize Kernel Context with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by): A_shared = T.alloc_shared((block_M, block_K), dtype) B_shared = T.alloc_shared((block_N, block_K), dtype) C_local = T.alloc_fragment((block_M, block_N), accum_dtype) T.clear(C_local) for ko in T.Pipelined(T.ceildiv(K, block_K), num_stages=3): # Copy tile of A T.copy(A[by * block_M, ko * block_K], A_shared) T.copy(B[bx * block_N, ko * block_K], B_shared) T.gemm(A_shared, B_shared, C_local, transpose_B=True) if with_bias: for i, j in T.Parallel(block_M, block_N): C_local[i, j] += Bias[bx * block_N + j] T.copy(C_local, C[by * block_M, bx * block_N]) return main def run_test(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"): a = torch.randn(M, K, device="cuda", dtype=map_torch_type(dtype)) b = torch.randn(N, K, device="cuda", dtype=map_torch_type(dtype)) c = torch.zeros(M, N, device="cuda", dtype=map_torch_type(accum_dtype)) kernel = tensor_null_test(M, N, K, block_M, block_N, block_K, dtype, accum_dtype, with_bias=False) kernel(a, b, c, None) def test_nullptr(): run_test(1024, 1024, 1024, 128, 128, 32) if __name__ == "__main__": tilelang.testing.main()