Commit 5ee58ec7 authored by Zhengju Tang's avatar Zhengju Tang Committed by LeiWang1999
Browse files

[Dynamic Symbolic] Adaptively vectorize with different condition expressions (#326)



* [Dynamic Symbolic] Adaptively vectorize with different condition expressions

* Format

* Format

* Format

* Format

* Add MIT License headers to Python files

* Simplify return statement in loop vectorization

---------
Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
parent eab47249
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, einsum
import argparse
import time
import math
from heuristic import num_splits_heuristic
torch.manual_seed(0)
tilelang.disable_cache()
def flashattn(batch, heads, heads_kv, dim, dim_v):
scale = (1.0 / dim)**0.5 * 1.44269504 # log2(e)
dtype = "float16"
accum_dtype = "float"
kv_group_num = heads // heads_kv
def kernel_func(block_N, block_H, num_split, num_stages, threads, max_cache_seqlen,
max_selected_blocks):
shape_q = [batch, heads, dim]
shape_k = [batch, max_cache_seqlen, heads_kv, dim]
shape_v = [batch, max_cache_seqlen, heads_kv, dim_v]
shape_indices = [batch, heads_kv, max_selected_blocks]
shape_o = [batch, heads, dim_v]
part_shape = [batch, heads, num_split, dim_v]
valid_block_H = min(block_H, kv_group_num)
@T.macro
def flash_attn_split(
Q: T.Tensor(shape_q, dtype),
K: T.Tensor(shape_k, dtype),
V: T.Tensor(shape_v, dtype),
block_indices: T.Tensor(shape_indices, "int32"),
cache_seqlens: T.Tensor([batch], "int32"),
# actual_num_blocks: T.Tensor([batch], "int32"),
glse: T.Tensor([batch, heads, num_split], accum_dtype),
Output_partial: T.Tensor(part_shape, accum_dtype),
):
with T.Kernel(
batch, heads // valid_block_H, num_split, threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([block_H, dim], dtype)
K_shared = T.alloc_shared([block_N, dim], dtype)
V_shared = T.alloc_shared([block_N, dim_v], dtype)
acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
acc_o = T.alloc_fragment([block_H, dim_v], accum_dtype)
scores_max = T.alloc_fragment([block_H], accum_dtype)
scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
scores_scale = T.alloc_fragment([block_H], accum_dtype)
scores_sum = T.alloc_fragment([block_H], accum_dtype)
logsum = T.alloc_fragment([block_H], accum_dtype)
has_valid_block = T.alloc_var("bool")
# num_blocks = T.alloc_local([1], "int32")
bid = bx
hid = by
sid = bz
cur_kv_head = hid // (kv_group_num // valid_block_H)
T.copy(Q[bid, hid * valid_block_H:hid * valid_block_H + block_H, :], Q_shared)
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
# num_blocks = actual_num_blocks[bid]
num_blocks = max_selected_blocks
blocks_per_split = T.floordiv(num_blocks, num_split)
remaining_blocks = T.floormod(num_blocks, num_split)
loop_range = (blocks_per_split + T.if_then_else(sid < remaining_blocks, 1, 0))
start = blocks_per_split * sid + T.min(sid, remaining_blocks)
has_valid_block = False
# if (start < num_blocks):
for k in T.Pipelined(loop_range, num_stages=num_stages):
i_s = block_indices[bid, cur_kv_head, start + k]
if i_s >= 0:
has_valid_block = True
T.copy(K[bid, i_s * block_N:(i_s + 1) * block_N, cur_kv_head, :], K_shared)
T.clear(acc_s)
T.gemm(
Q_shared,
K_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullRow)
if k == 0: # assume block_indices is sorted in reverse order, otherwise, remove this if condition
for i, j in T.Parallel(block_H, block_N):
acc_s[i,
j] = T.if_then_else(i_s * block_N + j >= cache_seqlens[bid],
-T.infinity(accum_dtype), acc_s[i, j])
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_H):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale -
scores_max[i] * scale)
for i, j in T.Parallel(block_H, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(block_H):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
T.copy(acc_s, acc_s_cast)
for i, j in T.Parallel(block_H, dim_v):
acc_o[i, j] *= scores_scale[i]
T.copy(V[bid, i_s * block_N:(i_s + 1) * block_N, cur_kv_head, :], V_shared)
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
if has_valid_block:
for i, j in T.Parallel(block_H, dim_v):
acc_o[i, j] /= logsum[i]
for i in T.Parallel(block_H):
logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
for i in T.Parallel(block_H):
if i < valid_block_H:
glse[bid, hid * valid_block_H + i, sid] = logsum[i]
for i, j in T.Parallel(block_H, dim_v):
if i < valid_block_H:
Output_partial[bid, hid * valid_block_H + i, sid, j] = acc_o[i, j]
@T.macro
def combine(
glse: T.Tensor([batch, heads, num_split], accum_dtype),
Output_partial: T.Tensor(part_shape, accum_dtype),
Output: T.Tensor(shape_o, dtype),
):
with T.Kernel(heads, batch, threads=128) as (by, bz):
po_local = T.alloc_fragment([dim_v], accum_dtype)
o_accum_local = T.alloc_fragment([dim_v], accum_dtype)
lse_local_split = T.alloc_local([1], accum_dtype)
lse_logsum_local = T.alloc_local([1], accum_dtype)
lse_max_local = T.alloc_local([1], accum_dtype)
scale_local = T.alloc_local([1], accum_dtype)
T.annotate_layout({
lse_logsum_local:
T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
})
T.clear(lse_logsum_local)
T.clear(o_accum_local)
lse_max_local[0] = -T.infinity(accum_dtype)
for k in T.serial(num_split):
lse_max_local[0] = T.max(lse_max_local[0], glse[bz, by, k])
for k in T.Pipelined(num_split, num_stages=1):
lse_local_split[0] = glse[bz, by, k]
lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
for k in T.serial(num_split):
for i in T.Parallel(dim_v):
po_local[i] = Output_partial[bz, by, k, i]
lse_local_split[0] = glse[bz, by, k]
scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
for i in T.Parallel(dim_v):
o_accum_local[i] += po_local[i] * scale_local[0]
for i in T.Parallel(dim_v):
Output[bz, by, i] = o_accum_local[i]
@T.prim_func
def main(
Q: T.Tensor(shape_q, dtype),
K: T.Tensor(shape_k, dtype),
V: T.Tensor(shape_v, dtype),
block_indices: T.Tensor(shape_indices, "int32"),
cache_seqlens: T.Tensor([batch], "int32"),
# actual_num_blocks: T.Tensor([batch], "int32"),
glse: T.Tensor([batch, heads, num_split], accum_dtype),
Output_partial: T.Tensor(part_shape, accum_dtype),
Output: T.Tensor(shape_o, dtype),
):
# flash_attn_split(Q, K, V, block_indices, cache_seqlens, actual_num_blocks, glse, Output_partial)
flash_attn_split(Q, K, V, block_indices, cache_seqlens, glse, Output_partial)
combine(glse, Output_partial, Output)
return main
return kernel_func
class SparseFlashAttn(torch.nn.Module):
def __init__(self, batch, heads, heads_kv, dim, dim_v, block_size):
super(SparseFlashAttn, self).__init__()
self.batch = batch
self.heads = heads
self.heads_kv = heads_kv
self.dim = dim
self.dim_v = dim_v
self.block_size = block_size
self.block_H = 64
program = flashattn(batch, heads, heads_kv, dim, dim_v)(
block_N=block_size,
block_H=self.block_H,
num_split=T.symbolic("num_split"),
num_stages=2,
threads=128,
max_cache_seqlen=T.symbolic("max_cache_seqlen"),
max_selected_blocks=T.symbolic("max_selected_blocks")
# max_selected_blocks=52
)
self.kernel = tilelang.compile(
program, out_idx=-1, target='cuda', execution_backend="cython")
props = torch.cuda.get_device_properties(torch.device("cuda:0"))
self.num_sm = props.multi_processor_count
def forward(self, query, key, value, block_indices, cache_seqlens):
batch = self.batch
heads = self.heads
heads_kv = self.heads_kv
dim_v = self.dim_v
block_size = self.block_size
max_selected_blocks = block_indices.shape[-1]
# Compute static scheduling parameters
num_m_blocks = 1 * (heads // heads_kv + self.block_H - 1) // self.block_H
num_n_blocks = max_selected_blocks
size_one_kv_head = max_selected_blocks * block_size * (dim + dim_v) * 2
total_mblocks = batch * heads_kv * num_m_blocks
# num_sm = 132
num_sm = self.num_sm
num_split = num_splits_heuristic(
total_mblocks,
num_sm,
num_n_blocks,
num_m_blocks,
size_one_kv_head,
is_causal_or_local=True,
max_splits=128)
# Function to compile
# def compute_actual_num_blocks(block_indices):
# actual_num_blocks = torch.sum(block_indices != -1, dim=-1).to(torch.int32)
# actual_num_blocks = actual_num_blocks[:, 0] # [batch]
# return actual_num_blocks
# compiled_fn = torch.compile(compute_actual_num_blocks)
# actual_num_blocks = compiled_fn(block_indices)
glse = torch.empty((batch, heads, num_split), dtype=torch.float32, device='cuda')
output_partial = torch.empty((batch, heads, num_split, dim_v),
dtype=torch.float32,
device='cuda')
# output = self.kernel(
# query, key, value, block_indices, cache_seqlens,
# actual_num_blocks, glse, output_partial
# )
output = self.kernel(query, key, value, block_indices, cache_seqlens, glse, output_partial)
return output
def sparse_gqa_decode_varlen_indice(query, key, value, block_indices, cache_seqlens,
max_cache_seqlen, block_size):
"""
Args:
query: [batch, heads, dim]
key: [batch, max_cache_seqlen, heads_kv, dim]
value: [batch, max_cache_seqlen, heads_kv, dim_v]
block_indices: [batch, heads_kv, max_selected_blocks], indices of selected blocks, -1 for padding
cache_seqlens: [batch], sequence lengths of the kvcache
max_cache_seqlen: maximum sequence length of kvcache
block_size: block size
Returns:
output: [batch, heads, dim_v]
"""
batch, heads, dim = query.shape
heads_kv = key.shape[2]
dim_v = value.shape[-1]
max_selected_blocks = block_indices.shape[-1]
block_H = 64
actual_num_blocks = torch.sum(block_indices != -1, dim=-1).to(torch.int32)
actual_num_blocks = actual_num_blocks[:,
0] #[batch], number of valid blocks, assume all groups in the same batch have the same number of blocks
# get num_split
num_m_blocks = 1 * (heads // heads_kv + block_H - 1) // block_H
num_n_blocks = max_selected_blocks #(kv_seqlen + block_size - 1 ) // block_size
# num_n_blocks = torch.sum(actual_num_blocks, dim=-1).item() * heads_kv # total number of blocks
size_one_kv_head = max_selected_blocks * block_size * (
dim + dim_v) * 2 #kv_seqlen * (dim + dim_v) * 2
total_mblocks = batch * heads_kv * num_m_blocks
num_sm = 132
num_split = num_splits_heuristic(
total_mblocks,
num_sm,
num_n_blocks,
num_m_blocks,
size_one_kv_head,
is_causal_or_local=True,
max_splits=128)
program = flashattn(batch, heads, heads_kv, dim, dim_v)(
block_N=block_size,
block_H=block_H,
num_split=T.symbolic("num_split"),
num_stages=2,
threads=128,
max_cache_seqlen=T.symbolic("max_cache_seqlen"),
max_selected_blocks=T.symbolic("max_selected_blocks"))
glse = torch.empty((batch, heads, num_split), dtype=torch.float32, device='cuda')
Output_partial = torch.empty((batch, heads, num_split, dim_v),
dtype=torch.float32,
device='cuda')
kernel = tilelang.compile(program, out_idx=-1, target='cuda', execution_backend="cython")
# print(kernel.get_kernel_source())
output = kernel(query, key, value, block_indices, cache_seqlens, actual_num_blocks, glse,
Output_partial)
# output = kernel(query, key, value, block_indices, cache_seqlens, glse, Output_partial)
return output
def ref_program_torch(query, key, value, block_indices, cache_seqlens, max_cache_seqlen, num_blocks,
block_size):
batch, heads, dim = query.shape
heads_kv = key.shape[2]
num_head_groups = query.shape[1] // key.shape[2]
scale = dim**0.5
key = rearrange(key, 'b n h d -> b h n d') # [batch_size, heads_kv, seqlen_kv, dim]
value = rearrange(value, 'b n h d -> b h n d') # [batch_size, heads_kv, seqlen_kv, dim]
query = rearrange(
query, 'b (h g) d -> b g h d',
g=num_head_groups) # [batch_size, num_head_groups, heads_kv, dim]
scores = einsum(
query, key,
'b g h d, b h s d -> b g h s') # [batch_size, num_head_groups, heads_kv, seqlen_kv]
sparse_mask = torch.zeros_like(scores)
# Assign mask values based on block_indices
for b in range(batch):
for h in range(heads_kv):
valid_indices = block_indices[b, h] # Extract indices for this batch and head
for idx in valid_indices:
if idx >= 0:
sparse_mask[b, :, h, idx * block_size:(idx + 1) * block_size] = 1
scores = scores.masked_fill(sparse_mask == 0, float('-inf'))
range_len = torch.arange(scores.shape[-1], device='cuda').unsqueeze(0)
cache_seqlens_expanded = cache_seqlens.unsqueeze(1)
pad_mask = range_len >= cache_seqlens_expanded
pad_mask = pad_mask[:, None, None, :]
scores = scores.masked_fill(pad_mask, float('-inf'))
attention = F.softmax(
scores / scale, dim=-1) # [batch_size, num_head_groups, heads_kv, seqlen_kv]
out = einsum(attention, value,
'b g h s, b h s d -> b g h d') # [batch_size, num_head_groups, heads_kv, dim]
out = rearrange(out, 'b g h d -> b (h g) d') # [batch_size, heads, dim]
return out
def ref_program_fa(query, key, value, block_indices, cache_seqlens, max_cache_seqlen, num_blocks,
block_size):
# latency reference
# from flash_attn_interface import flash_attn_with_kvcache, flash_attn_func # fa3
from flash_attn import flash_attn_with_kvcache, flash_attn_func # noqa f401
query = query.unsqueeze(1)
output = flash_attn_with_kvcache(query, key, value, cache_seqlens=cache_seqlens)
output = output.squeeze(1)
return output
def debug(name, expect, actual, atol=1e-3, rtol=1e-3):
all_close = torch.allclose(expect, actual, atol=atol, rtol=rtol)
print(name + " all_close={}".format(all_close))
if not all_close:
# print(expect[3, 28])
# print(actual[3, 28])
diff = (expect - actual).abs()
print("all_close={}, max={}, min={}, mean={}".format(all_close,
diff.max().item(),
diff.min().item(),
diff.mean().item()))
max_indices = torch.nonzero(diff == diff.max().item())
first_index = tuple(max_indices[0].tolist())
print(f"Index: {first_index}, expect: {expect[first_index]}, actual: {actual[first_index]}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=8, help='batch size')
parser.add_argument('--heads', type=int, default=32, help='heads')
parser.add_argument('--heads_kv', type=int, default=8, help='heads_kv')
parser.add_argument(
'--max_cache_seqlen', type=int, default=8192, help='kvcache sequence length')
parser.add_argument('--dim', type=int, default=128, help='dim')
parser.add_argument('--dim_v', type=int, default=128, help='dim_v')
parser.add_argument('--sparse_ratio', type=float, default=0.8, help='sparse ratio')
parser.add_argument('--block_size', type=int, default=32, help='block_size')
args = parser.parse_args()
batch, heads, heads_kv, max_cache_seqlen, dim, dim_v = args.batch, args.heads, args.heads_kv, args.max_cache_seqlen, args.dim, args.dim_v
sparse_ratio = args.sparse_ratio
block_size = args.block_size
qk_flops = 2 * batch * heads * max_cache_seqlen * dim
pv_flops = 2 * batch * heads * max_cache_seqlen * dim_v
total_flops = qk_flops + pv_flops
max_selected_blocks = int(math.ceil(max_cache_seqlen * (1 - sparse_ratio) / block_size))
print("max_selected_blocks: ", max_selected_blocks)
dtype = torch.float16
block_H = 64
Q = torch.randn((batch, heads, dim), dtype=dtype, device='cuda')
K = torch.randn((batch, max_cache_seqlen, heads_kv, dim), dtype=dtype, device='cuda')
V = torch.randn((batch, max_cache_seqlen, heads_kv, dim_v), dtype=dtype, device='cuda')
cache_seqlens = torch.randint(1, max_cache_seqlen, (batch,), dtype=torch.int32, device='cuda')
# cache_seqlens = torch.full((batch,), max_cache_seqlen, dtype=torch.int32, device='cuda')
# Ensure at least one element equals cache_seqlen
random_index = torch.randint(0, batch, (1,), device='cuda').item() # Select a random index
cache_seqlens[
random_index] = max_cache_seqlen # Assign cache_seqlen to ensure at least one occurrence
print("cache_seqlens: ", cache_seqlens)
max_valid_num_blocks = torch.ceil(cache_seqlens / block_size).int()
print("max_valid_num_blocks: ", max_valid_num_blocks)
# Initialize block_indices with -1 (for padding blocks)
block_indices = torch.full((batch, heads_kv, max_selected_blocks),
-1,
dtype=torch.int32,
device='cuda')
# Assign valid indices while ensuring no duplicates within each batch-group
for b in range(batch):
max_valid_block = max_valid_num_blocks[b].item() # Max valid blocks for this batch
if max_valid_block > 0: # Ensure there's at least one valid block
for h in range(heads_kv):
valid_indices = torch.randperm(
max_valid_block, device='cuda', dtype=torch.int32)[:max_selected_blocks]
block_indices[b, h, :len(valid_indices)] = valid_indices
# Sort indices within each batch-group for consistency
block_indices, _ = block_indices.sort(dim=-1, descending=True)
# print("block_indices: ", block_indices)
actual_num_blocks = torch.sum(block_indices != -1, dim=-1).to(torch.int32)[:, 0]
print("actual_num_blocks: ", actual_num_blocks)
print(block_indices.shape, actual_num_blocks.shape)
max_num_blocks = torch.max(max_valid_num_blocks).item()
print("max_num_blocks: ", max_num_blocks)
# parity reference
ref = ref_program_torch(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, max_num_blocks,
block_size)
# ref = ref_program_triton(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, max_num_blocks, block_size)
# out = kernel(Q, K, V, block_indices, cache_seqlens, actual_num_blocks, glse, Output_partial)
# out = sparse_gqa_decode_varlen_indice(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, block_size)
sparse_kernel = SparseFlashAttn(batch, heads, heads_kv, dim, dim_v, block_size)
out = sparse_kernel(Q, K, V, block_indices, cache_seqlens)
debug("output", ref, out, atol=1e-3, rtol=1e-3)
## latency reference
for _i in range(10):
ref = ref_program_fa(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen,
max_num_blocks, block_size)
torch.cuda.synchronize()
start = time.time()
for _i in range(100):
ref = ref_program_fa(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen,
max_num_blocks, block_size)
torch.cuda.synchronize()
print("dense time: ", (time.time() - start) / 100 * 1000)
for _i in range(10):
# out = sparse_gqa_decode_varlen_indice(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, block_size)
out = sparse_kernel(Q, K, V, block_indices, cache_seqlens)
torch.cuda.synchronize()
start = time.time()
for _i in range(100):
# out = sparse_gqa_decode_varlen_indice(Q, K, V, block_indices, cache_seqlens, max_cache_seqlen, block_size)
out = sparse_kernel(Q, K, V, block_indices, cache_seqlens)
torch.cuda.synchronize()
print("sparse time: ", (time.time() - start) / 100 * 1000)
import math
def num_splits_heuristic(total_mblocks, num_SMs, num_n_blocks, num_m_blocks, size_one_kv_head,
is_causal_or_local, max_splits):
"""
Determines the optimal number of splits for maximizing GPU occupancy while balancing memory efficiency.
Parameters:
- total_mblocks (int): Total number of m_blocks.
- num_SMs (int): Number of Streaming Multiprocessors (SMs) in the GPU.
- num_n_blocks (int): Number of n_blocks.
- num_m_blocks (int): Number of m_blocks.
- size_one_kv_head (int): Size of one KV head in bytes.
- is_causal_or_local (bool): Indicates whether the operation is causal or local.
- max_splits (int): Maximum number of allowed splits.
Returns:
- int: The optimal number of splits.
"""
# If we have enough m_blocks to almost fill the SMs, prefer 1 split unless memory constraints apply.
if total_mblocks >= 0.8 * num_SMs:
size_l2 = 50 * 1024 * 1024 # L2 cache size assumption (50MB)
# Only split if each KV head is too large for L2 and there are enough m_blocks
if size_one_kv_head > size_l2 and num_m_blocks >= num_SMs * 2 and not is_causal_or_local:
return min((size_one_kv_head + size_l2 - 1) // size_l2, max_splits)
else:
return 1
# If num_n_blocks is too small, we don't split
if num_n_blocks <= 4:
return 1
# Limit max_splits to a reasonable range
max_splits = min(max_splits, num_SMs, num_n_blocks)
max_efficiency = 0.0
efficiency = []
# Compute efficiency for different splits
for num_splits in range(1, max_splits + 1):
n_waves = (total_mblocks * num_splits) / num_SMs
eff = n_waves / math.ceil(n_waves)
# Track max efficiency
if eff > max_efficiency:
max_efficiency = eff
efficiency.append(eff)
# Find the smallest number of splits that achieves at least 85% of max efficiency
for num_splits in range(1, max_splits + 1):
if efficiency[num_splits - 1] >= 0.85 * max_efficiency:
return num_splits
return 1
......@@ -6,6 +6,7 @@
#include <tvm/arith/iter_affine_map.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <numeric>
......@@ -262,6 +263,65 @@ private:
int loop_num_;
};
// Modify every subexpression in the condition
class VectorizedConditionMutator : public StmtExprMutator {
public:
VectorizedConditionMutator(Var inner_var, int extent)
: inner_var_(inner_var), vector_size_(extent) {}
private:
PrimExpr VisitExpr_(const GENode *node) final {
PrimExpr lhs = StmtExprMutator::VisitExpr(node->a);
PrimExpr rhs = StmtExprMutator::VisitExpr(node->b);
auto span = node->span;
Map<Var, PrimExpr> vmap_lhs, vmap_rhs;
vmap_lhs.Set(inner_var_, 0);
PrimExpr lhs_bound = Substitute(lhs, vmap_lhs);
vmap_rhs.Set(inner_var_, vector_size_ - 1);
PrimExpr rhs_bound = Substitute(rhs, vmap_rhs);
return GE(lhs_bound, rhs_bound, span);
}
PrimExpr VisitExpr_(const GTNode *node) final {
PrimExpr lhs = StmtExprMutator::VisitExpr(node->a);
PrimExpr rhs = StmtExprMutator::VisitExpr(node->b);
auto span = node->span;
Map<Var, PrimExpr> vmap_lhs, vmap_rhs;
vmap_lhs.Set(inner_var_, 0);
PrimExpr lhs_bound = Substitute(lhs, vmap_lhs);
vmap_rhs.Set(inner_var_, vector_size_ - 1);
PrimExpr rhs_bound = Substitute(rhs, vmap_rhs);
return GT(lhs_bound, rhs_bound, span);
}
PrimExpr VisitExpr_(const LENode *node) final {
PrimExpr lhs = StmtExprMutator::VisitExpr(node->a);
PrimExpr rhs = StmtExprMutator::VisitExpr(node->b);
auto span = node->span;
Map<Var, PrimExpr> vmap_lhs, vmap_rhs;
vmap_lhs.Set(inner_var_, vector_size_ - 1);
PrimExpr lhs_bound = Substitute(lhs, vmap_lhs);
vmap_rhs.Set(inner_var_, 0);
PrimExpr rhs_bound = Substitute(rhs, vmap_rhs);
return LE(lhs_bound, rhs_bound, span);
}
PrimExpr VisitExpr_(const LTNode *node) final {
PrimExpr lhs = StmtExprMutator::VisitExpr(node->a);
PrimExpr rhs = StmtExprMutator::VisitExpr(node->b);
auto span = node->span;
Map<Var, PrimExpr> vmap_lhs, vmap_rhs;
vmap_lhs.Set(inner_var_, vector_size_ - 1);
PrimExpr lhs_bound = Substitute(lhs, vmap_lhs);
vmap_rhs.Set(inner_var_, 0);
PrimExpr rhs_bound = Substitute(rhs, vmap_rhs);
return LT(lhs_bound, rhs_bound, span);
}
Var inner_var_;
int vector_size_;
};
class VectorizeRewriterDynamic : public StmtExprMutator {
public:
VectorizeRewriterDynamic(VectorizePlanResult plan)
......@@ -297,22 +357,19 @@ private:
VectorizedConditionExtracter extracter;
std::vector<PrimExpr> conditions = extracter.GetConditions(body);
// Set vectorize variable to the max value of the extent (i.e.
// vector_size_ - 1)
PrimExpr condition = conditions[0];
VectorizedConditionMutator condition_mutator(inner_var, vector_size_);
// Adaptively set vectorized variable to the min/max value of the extent
PrimExpr condition_bound = condition_mutator(conditions[0]);
for (int i = 1; i < conditions.size(); ++i) {
condition = condition && conditions[i];
condition_bound = condition_bound && condition_mutator(conditions[i]);
}
// add condition ifthenelse here
Map<Var, PrimExpr> vmap_condition;
vmap_condition.Set(inner_var, vector_size_ - 1);
PrimExpr condition_bound = Substitute(condition, vmap_condition);
// modify body in the vectorized loop
VectorizedBodyMutator mutator(inner_var, vector_size_, conditions);
Stmt vectorize_body = mutator(body);
// add condition ifthenelse here
For vectorize_for =
For(inner_var, 0, vector_size_, ForKind::kVectorized, vectorize_body);
For serial_for = For(inner_var, 0, vector_size_, ForKind::kSerial, body);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment