Unverified Commit fd89d9df authored by Nicolas Patry's avatar Nicolas Patry Committed by GitHub
Browse files

Refactor layers. (#1866)

# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
parent 59b3ffea
......@@ -2,7 +2,7 @@ import math
import torch
from typing import Optional, List, Tuple
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM
from text_generation_server.utils.import_utils import SYSTEM
BLOCK_SIZE: int = 16
# Will be set in warmup
......@@ -25,7 +25,7 @@ class CacheManager:
self.repeat_slots = repeat_slots
element_size = torch.tensor([], dtype=dtype).element_size()
if IS_XPU_SYSTEM:
if SYSTEM == "xpu":
x = 1
else:
x = self.block_size // element_size
......
......@@ -32,7 +32,7 @@ from transformers.modeling_outputs import (
)
from transformers import BloomConfig, PreTrainedModel
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
......
......@@ -15,7 +15,7 @@ from transformers.modeling_outputs import (
)
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelEmbedding,
TensorParallelColumnLinear,
TensorParallelRowLinear,
......
......@@ -26,18 +26,22 @@ from transformers.activations import ACT2FN
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.import_utils import IS_ROCM_SYSTEM, IS_CUDA_SYSTEM
from text_generation_server.utils.layers import (
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
if IS_CUDA_SYSTEM:
if SYSTEM == "cuda":
import dropout_layer_norm
else:
dropout_layer_norm = None
......@@ -52,7 +56,7 @@ class CohereRotary(PositionRotaryEmbedding):
sin: torch.Tensor,
):
# Such controlflows may add some overhead.
if IS_CUDA_SYSTEM:
if SYSTEM == "cuda":
import rotary_emb
q1 = query[..., ::2]
......@@ -64,7 +68,7 @@ class CohereRotary(PositionRotaryEmbedding):
k2 = key[..., 1::2]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif IS_ROCM_SYSTEM:
elif SYSTEM == "rocm":
from vllm import pos_encoding_ops
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
......@@ -90,7 +94,7 @@ class CohereLayerNorm(nn.Module):
self.eps = eps
def forward(self, hidden_states):
if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
if hidden_states.shape[-1] > 8192 or SYSTEM == "rocm":
hidden_states = hidden_states.reshape(
-1, self.weight.shape[0], self.weight.shape[1]
)
......
......@@ -21,21 +21,26 @@ from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple, Any
from loguru import logger
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM
from text_generation_server.utils.import_utils import SYSTEM
if not IS_XPU_SYSTEM:
if SYSTEM != "xpu":
from vllm.model_executor.layers.fused_moe import fused_moe
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
FastLinear,
FastLayerNorm,
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.utils.log import log_once
......@@ -216,7 +221,7 @@ def _load_gqa(config, prefix: str, weights):
bits, groupsize, desc_act, quant_method = weights._get_gptq_params()
from text_generation_server.utils.layers import HAS_EXLLAMA
from text_generation_server.layers import HAS_EXLLAMA
use_exllama = (
bits == 4 and HAS_EXLLAMA and config.quantize == "gptq" and not desc_act
......@@ -236,7 +241,7 @@ def _load_gqa(config, prefix: str, weights):
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.utils.awq.conversion_utils import (
from text_generation_server.layers.awq.conveersion_utils import (
fast_awq_to_gptq,
)
......
......@@ -27,13 +27,15 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
......
......@@ -27,13 +27,15 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
......
......@@ -27,13 +27,15 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
......
......@@ -24,9 +24,9 @@ import torch.distributed
import numpy as np
from torch import nn
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM
from text_generation_server.utils.import_utils import SYSTEM
if not IS_XPU_SYSTEM:
if SYSTEM != "xpu":
from vllm.model_executor.layers.fused_moe import fused_moe
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
......@@ -34,16 +34,20 @@ from typing import Optional, List, Tuple
from loguru import logger
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
FastLinear,
FastRMSNorm,
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
class MixtralConfig(PretrainedConfig):
......
......@@ -29,14 +29,18 @@ from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.flash_attn import attention
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
get_linear,
)
......
......@@ -7,15 +7,19 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
class PhiConfig(PretrainedConfig):
......
......@@ -6,13 +6,15 @@ from transformers.activations import ACT2FN
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
......
......@@ -8,14 +8,18 @@ from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.flash_attn import attention
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
SpeculativeHead,
get_linear,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
get_linear,
)
......
......@@ -6,14 +6,16 @@ from transformers.activations import ACT2FN
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
SpeculativeHead,
TensorParallelEmbedding,
FastLayerNorm,
get_linear,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
def load_multi_mqa(
......@@ -80,13 +82,13 @@ def _load_multi_mqa_gptq(
g_idx = g_idx.to(device=weights.device)
elif quant_method == "awq":
g_idx = None
from text_generation_server.utils.awq.conversion_utils import (
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
from text_generation_server.utils.layers import HAS_EXLLAMA
from text_generation_server.layers.gptq import HAS_EXLLAMA
use_exllama = HAS_EXLLAMA
weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama)
......
......@@ -27,15 +27,19 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead,
get_linear,
FastRMSNorm,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
FastRMSNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
......
......@@ -29,7 +29,7 @@ from text_generation_server.models.custom_modeling.vlm import (
)
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
......
......@@ -47,20 +47,22 @@ from text_generation_server.models.custom_modeling.idefics_vision import (
from text_generation_server.models.custom_modeling.idefics_perceiver import (
IdeficsPerceiverResampler,
)
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
SpeculativeHead,
PositionRotaryEmbedding,
FastLinear,
)
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.utils.import_utils import SYSTEM
if IS_CUDA_SYSTEM:
if SYSTEM == "cuda":
import dropout_layer_norm
elif IS_ROCM_SYSTEM:
elif SYSTEM == "rocm":
from vllm import layernorm_ops
else:
raise RuntimeError(f"Unsupported system {SYSTEM}")
@dataclass
......@@ -373,7 +375,7 @@ class IdeficsRMSNorm(nn.Module):
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
elif IS_CUDA_SYSTEM:
elif SYSTEM == "cuda":
# faster post attention rms norm
unwrap = False
if len(hidden_states.shape) > 2:
......@@ -405,7 +407,7 @@ class IdeficsRMSNorm(nn.Module):
normed_hidden_states = normed_hidden_states.view(*shape)
return normed_hidden_states
elif IS_ROCM_SYSTEM:
elif SYSTEM == "rocm":
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
if residual is not None:
hidden_states += residual
......
......@@ -41,7 +41,7 @@ from typing import Optional, Tuple
import torch
import torch.nn as nn
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
......
......@@ -28,7 +28,7 @@ from transformers.utils import (
ModelOutput,
logging,
)
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
TensorParallelEmbedding,
......
......@@ -27,7 +27,7 @@ from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
from text_generation_server.utils.layers import (
from text_generation_server.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment