Unverified Commit bf700e7e authored by Nicolas Patry's avatar Nicolas Patry Committed by GitHub
Browse files

Revamp medusa implementation so that every model can benefit. (#1588)

# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
parent ac5a1c6f
......@@ -13,7 +13,7 @@ from text_generation_server.utils.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelHead,
SpeculativeHead,
FastLinear,
)
......@@ -120,7 +120,7 @@ class PhiCausalLMHead(nn.Module):
weights=weights,
eps=config.layer_norm_epsilon,
)
self.linear = TensorParallelHead.load(
self.linear = SpeculativeHead.load(
config=config, prefix="lm_head.linear", weights=weights
)
......
......@@ -42,7 +42,7 @@ from text_generation_server.utils.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
TensorParallelHead,
SpeculativeHead,
)
......@@ -1033,14 +1033,14 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
)
try:
self.lm_head = TensorParallelHead.load(
self.lm_head = SpeculativeHead.load(
config, prefix="lm_head", weights=weights
)
except RuntimeError:
# Some models like t5-small were saved with shared weights unlike flan
# Since they are declared as the same arch we have no choice but hope
# that this is OK instead of using a proper flag.
self.lm_head = TensorParallelHead.load(
self.lm_head = SpeculativeHead.load(
config, prefix="shared", weights=weights
)
......@@ -1126,7 +1126,7 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
logits, speculative_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
......@@ -1140,9 +1140,10 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
return (
Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
logits=logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
......@@ -1150,6 +1151,8 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
),
speculative_logits,
)
def prepare_inputs_for_generation(
......
......@@ -723,7 +723,7 @@ class FlashCausalLM(Model):
torch.cuda.synchronize()
with torch.cuda.graph(graph, pool=MEM_POOL):
self.cuda_graphs[bs]["logits"] = self.model.forward(
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
......@@ -734,6 +734,8 @@ class FlashCausalLM(Model):
max_s=max_s,
lm_head_indices=None,
)
self.cuda_graphs[bs]["logits"] = logits
self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
torch.cuda.synchronize()
def warmup(self, batch: FlashCausalLMBatch):
......@@ -805,7 +807,9 @@ class FlashCausalLM(Model):
return int(num_blocks * BLOCK_SIZE)
def forward(self, batch: FlashCausalLMBatch) -> torch.Tensor:
def forward(
self, batch: FlashCausalLMBatch
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# Model Forward
if batch.speculative_ids is not None:
input_ids = batch.input_ids
......@@ -900,9 +904,14 @@ class FlashCausalLM(Model):
# Replay the graph
cuda_graph["graph"].replay()
# Slice output to the correct shape
return cuda_graph["logits"][:bs]
speculative_logits = (
cuda_graph["speculative_logits"][:bs]
if cuda_graph["speculative_logits"] is not None
else None
)
logits = cuda_graph["logits"][:bs]
return logits, speculative_logits
@tracer.start_as_current_span("generate_token")
def generate_token(
......@@ -926,16 +935,11 @@ class FlashCausalLM(Model):
batch.slots = slots
try:
out = self.forward(batch)
out, speculative_logits = self.forward(batch)
except Exception as e:
del batch
raise e
if isinstance(out, tuple):
out, speculative_logits = out
else:
speculative_logits = None
if prefill:
next_token_logits = (
out[batch.prefill_next_token_indices] if prefill_logprobs else out
......
......@@ -25,9 +25,9 @@ class FlashGemma(FlashCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
use_medusa: Optional[str] = None,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
......@@ -50,6 +50,7 @@ class FlashGemma(FlashCausalLM):
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
......@@ -59,36 +60,6 @@ class FlashGemma(FlashCausalLM):
weights._set_gptq_params(model_id, revision)
model = FlashGemmaForCausalLM(config, weights)
if use_medusa:
from text_generation_server.utils.medusa import MedusaModel
from huggingface_hub import hf_hub_download
import json
import os
from pathlib import Path
is_local_model = (
Path(use_medusa).exists() and Path(use_medusa).is_dir()
) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None
if not is_local_model:
medusa_config = hf_hub_download(
use_medusa, revision=revision, filename="config.json"
)
medusa_head = hf_hub_download(
use_medusa, revision=revision, filename="medusa_lm_head.pt"
)
else:
medusa_config = str(Path(use_medusa) / "config.json")
medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt")
with open(medusa_config, "r") as f:
config = json.load(f)
medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
weights = Weights(
[medusa_sf], device, dtype, process_group=self.process_group
)
lm_head = model.lm_head
model.lm_head = MedusaModel(config, weights, lm_head)
torch.distributed.barrier(group=self.process_group)
super(FlashGemma, self).__init__(
......
......@@ -26,9 +26,9 @@ class FlashLlama(FlashCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
use_medusa: Optional[str] = None,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
......@@ -58,6 +58,7 @@ class FlashLlama(FlashCausalLM):
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
......@@ -67,37 +68,6 @@ class FlashLlama(FlashCausalLM):
weights._set_gptq_params(model_id, revision)
model = FlashLlamaForCausalLM(config, weights)
if use_medusa:
from text_generation_server.utils.medusa import MedusaModel
from huggingface_hub import hf_hub_download
import json
import os
from pathlib import Path
is_local_model = (
Path(use_medusa).exists() and Path(use_medusa).is_dir()
) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None
if not is_local_model:
medusa_config = hf_hub_download(
use_medusa, revision=revision, filename="config.json"
)
medusa_head = hf_hub_download(
use_medusa, revision=revision, filename="medusa_lm_head.pt"
)
else:
medusa_config = str(Path(use_medusa) / "config.json")
medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt")
with open(medusa_config, "r") as f:
config = json.load(f)
medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
weights = Weights(
[medusa_sf], device, dtype, process_group=self.process_group
)
lm_head = model.lm_head
model.lm_head = MedusaModel(config, weights, lm_head)
torch.distributed.barrier(group=self.process_group)
super(FlashLlama, self).__init__(
model=model,
......
......@@ -294,6 +294,7 @@ class BaseFlashMistral(FlashCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -319,6 +320,7 @@ class BaseFlashMistral(FlashCausalLM):
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
# Set context windows
if config.sliding_window is not None:
......@@ -394,7 +396,7 @@ class BaseFlashMistral(FlashCausalLM):
torch.cuda.synchronize()
with torch.cuda.graph(graph, pool=MEM_POOL):
self.cuda_graphs[bs]["logits"] = self.model.forward(
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
......@@ -406,9 +408,13 @@ class BaseFlashMistral(FlashCausalLM):
prefill_cache_indices=None,
lm_head_indices=None,
)
self.cuda_graphs[bs]["logits"] = logits
self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
torch.cuda.synchronize()
def forward(self, batch: FlashMistralBatch) -> Tuple[torch.Tensor, torch.Tensor]:
def forward(
self, batch: FlashMistralBatch
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# Model Forward
if batch.speculative_ids is not None:
input_ids = batch.input_ids
......@@ -479,7 +485,7 @@ class BaseFlashMistral(FlashCausalLM):
cuda_graph = self.cuda_graphs.get(padded_bs, None)
if cu_seqlen_prefill is not None or cuda_graph is None:
logits = self.model.forward(
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
......@@ -493,7 +499,7 @@ class BaseFlashMistral(FlashCausalLM):
)
if batch.prefill_cache_indices is not None:
batch.prefill_cache_indices = None
return logits
return logits, speculative_logits
# Copy inputs to the static inputs of the cuda graph
# Static inputs are potentially padded
......@@ -511,7 +517,13 @@ class BaseFlashMistral(FlashCausalLM):
cuda_graph["graph"].replay()
# Slice output to the correct shape
return cuda_graph["logits"][:bs]
speculative_logits = (
cuda_graph["speculative_logits"][:bs]
if cuda_graph["speculative_logits"] is not None
else None
)
logits = cuda_graph["logits"][:bs]
return logits, speculative_logits
class FlashMistral(BaseFlashMistral):
......@@ -520,6 +532,7 @@ class FlashMistral(BaseFlashMistral):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -529,6 +542,7 @@ class FlashMistral(BaseFlashMistral):
model_id=model_id,
revision=revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
......@@ -15,6 +15,7 @@ class FlashMixtral(BaseFlashMistral):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -24,6 +25,7 @@ class FlashMixtral(BaseFlashMistral):
model_id=model_id,
revision=revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
......@@ -24,6 +24,7 @@ class FlashNeoXSharded(FlashCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -46,6 +47,7 @@ class FlashNeoXSharded(FlashCausalLM):
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
......
......@@ -25,9 +25,9 @@ class FlashPhi(FlashCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
use_medusa: Optional[str] = None,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
......@@ -48,6 +48,7 @@ class FlashPhi(FlashCausalLM):
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
......
......@@ -25,6 +25,7 @@ class FlashRWSharded(FlashCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -61,6 +62,7 @@ class FlashRWSharded(FlashCausalLM):
)
config.quantize = quantize
config.use_medusa = use_medusa
if config.quantize == "gptq":
weights._set_gptq_params(model_id, revision)
......
......@@ -27,6 +27,7 @@ class FlashSantacoderSharded(FlashCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -51,6 +52,7 @@ class FlashSantacoderSharded(FlashCausalLM):
trust_remote_code=True,
)
config.quantize = quantize
config.use_medusa = use_medusa
config.transpose = config.architectures[0].startswith("GPT2")
torch.distributed.barrier(group=self.process_group)
......
......@@ -31,6 +31,7 @@ class IDEFICSSharded(IdeficsCausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -51,6 +52,7 @@ class IDEFICSSharded(IdeficsCausalLM):
trust_remote_code=trust_remote_code,
)
config.quantize = quantize
config.use_medusa = use_medusa
config.vision_config.quantize = quantize
tokenizer = LlamaTokenizerFast.from_pretrained(
......
......@@ -662,8 +662,13 @@ class IdeficsCausalLM(Model):
if self.has_position_ids:
kwargs["position_ids"] = position_ids
outputs = self.model.forward(**kwargs)
return outputs.logits, outputs.past_key_values, outputs.image_hidden_states
outputs, speculative_logits = self.model.forward(**kwargs)
return (
outputs.logits,
speculative_logits,
outputs.past_key_values,
outputs.image_hidden_states,
)
@tracer.start_as_current_span("generate_token")
def generate_token(
......@@ -686,7 +691,7 @@ class IdeficsCausalLM(Model):
:, : -batch.padding_right_offset
]
logits, past, image_hidden_states = self.forward(
logits, speculative_logits, past, image_hidden_states = self.forward(
input_ids=batch.input_ids,
attention_mask=attention_mask,
position_ids=batch.position_ids,
......
......@@ -408,6 +408,7 @@ class Mamba(Model):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -444,6 +445,7 @@ class Mamba(Model):
tokenizer.pad_token = tokenizer.eos_token
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(filenames, device, dtype, process_group=self.process_group)
......@@ -505,7 +507,7 @@ class Mamba(Model):
torch.cuda.synchronize()
with torch.cuda.graph(graph, pool=MEM_POOL):
logits = self.model.forward(
logits, speculative_logits = self.model.forward(
input_ids=input_ids, inference_params=inference_params
)
torch.cuda.synchronize()
......@@ -514,6 +516,7 @@ class Mamba(Model):
"inference_params": inference_params,
"graph": graph,
"logits": logits,
"speculative_logits": speculative_logits,
}
self.cuda_graphs[batch_size] = graph_dict
......@@ -556,9 +559,14 @@ class Mamba(Model):
inference_params.ssm_states.copy_(
cuda_graph["inference_params"].ssm_states[:, :bs]
)
# Slice output to the correct shape
return cuda_graph["logits"][:bs]
speculative_logits = (
cuda_graph["speculative_logits"][:bs]
if cuda_graph["speculative_logits"] is not None
else None
)
logits = cuda_graph["logits"][:bs]
return logits, speculative_logits
def generate_token(self, batch) -> Tuple[List[Any], Optional[Any], Tuple[int, int]]:
start = time.time_ns()
......@@ -589,7 +597,9 @@ class Mamba(Model):
batch.inference_params = inference_params
# Forward pass
logits = self.forward(input_ids, inference_params=batch.inference_params)
logits, speculative_logits = self.forward(
input_ids, inference_params=batch.inference_params
)
# batch.inference_params = new_inference_params
# Results
......
......@@ -43,6 +43,7 @@ class MPTSharded(CausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -75,6 +76,7 @@ class MPTSharded(CausalLM):
config = json.load(f)
config = PretrainedConfig(**config)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
......
......@@ -22,6 +22,7 @@ class OPTSharded(CausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -47,6 +48,7 @@ class OPTSharded(CausalLM):
trust_remote_code=trust_remote_code,
)
config.quantize = quantize
config.use_medusa = use_medusa
tokenizer.pad_token_id = config.pad_token_id
torch.distributed.barrier(group=self.process_group)
......
......@@ -22,6 +22,7 @@ class Phi(CausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -52,6 +53,7 @@ class Phi(CausalLM):
tokenizer.pad_token = tokenizer.eos_token
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(filenames, device, dtype, process_group=self.process_group)
......
......@@ -19,6 +19,7 @@ class SantaCoder(CausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......
......@@ -532,6 +532,7 @@ class Seq2SeqLM(Model):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -596,6 +597,7 @@ class Seq2SeqLM(Model):
past_key_values: Optional = None,
) -> Tuple[
torch.Tensor,
Optional[torch.Tensor],
torch.Tensor,
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
]:
......@@ -609,8 +611,15 @@ class Seq2SeqLM(Model):
past_key_values=past_key_values,
use_cache=True,
)
if isinstance(outputs, tuple):
# Our custom models
outputs, speculative_logits = outputs
else:
# Generic transformers models
speculative_logits = None
return (
outputs.logits,
speculative_logits,
outputs.encoder_last_hidden_state,
outputs.past_key_values,
)
......@@ -635,7 +644,7 @@ class Seq2SeqLM(Model):
else:
encoder_last_hidden_state = None
logits, encoder_last_hidden_state, past = self.forward(
logits, speculative_logits, encoder_last_hidden_state, past = self.forward(
batch.input_ids,
batch.attention_mask,
batch.decoder_input_ids,
......
......@@ -25,6 +25,7 @@ class T5Sharded(Seq2SeqLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
......@@ -42,6 +43,7 @@ class T5Sharded(Seq2SeqLM):
trust_remote_code=trust_remote_code,
)
config.quantize = quantize
config.use_medusa = use_medusa
tokenizer = AutoTokenizer.from_pretrained(
model_id,
......@@ -94,7 +96,7 @@ class T5Sharded(Seq2SeqLM):
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
]:
# Model Forward
outputs = self.model.forward(
outputs, speculative_logits = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
......@@ -106,6 +108,7 @@ class T5Sharded(Seq2SeqLM):
return (
outputs.logits,
speculative_logits,
outputs.encoder_last_hidden_state,
outputs.past_key_values,
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment