Commit 70056d1e authored by huangwb's avatar huangwb
Browse files

add custom vllm source code

parent 12d93ad7
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bloom/modeling_bloom.py
# Copyright 2023 The CacheFlow team.
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only BLOOM model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
import math
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import BloomConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttentionWithALiBi
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
base = torch.tensor(
2**(-(2**-(math.log2(closest_power_of_2) - 3))),
dtype=torch.float32,
)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != total_num_heads:
extra_base = torch.tensor(
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
dtype=torch.float32,
)
num_remaining_heads = min(closest_power_of_2,
total_num_heads - closest_power_of_2)
extra_powers = torch.arange(start=1,
end=1 + 2 * num_remaining_heads,
step=2,
dtype=torch.int32)
slopes = torch.cat(
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes
class BloomAttention(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.total_num_heads = config.n_head
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
self.query_key_value = ColumnParallelLinear(
self.hidden_size,
3 * self.hidden_size,
bias=True,
gather_output=False,
)
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
input_is_parallel=True,
)
# Create the alibi slopes and slice them.
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
scaling = self.head_dim**-0.5
self.attn = PagedAttentionWithALiBi(self.num_heads, self.head_dim,
scaling, alibi_slopes)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
del position_ids # Unused.
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
cache_event)
output, _ = self.dense(attn_output)
return output
class BloomMLP(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
hidden_size = config.hidden_size
self.dense_h_to_4h = ColumnParallelLinear(
hidden_size,
4 * hidden_size,
gather_output=False,
)
self.act = get_act_fn("gelu")
self.dense_4h_to_h = RowParallelLinear(
4 * hidden_size,
hidden_size,
input_is_parallel=True,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.dense_h_to_4h(x)
x = self.act(x)
x, _ = self.dense_4h_to_h(x)
return x
class BloomBlock(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
hidden_size = config.hidden_size
self.input_layernorm = nn.LayerNorm(hidden_size,
eps=config.layer_norm_epsilon)
self.self_attention = BloomAttention(config)
self.post_attention_layernorm = nn.LayerNorm(
hidden_size, eps=config.layer_norm_epsilon)
self.mlp = BloomMLP(config)
self.apply_residual_connection_post_layernorm = (
config.apply_residual_connection_post_layernorm)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Layer norm post the self attention.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
# Self attention.
attention_output = self.self_attention(
position_ids=position_ids,
hidden_states=layernorm_output,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
attention_output = attention_output + residual
layernorm_output = self.post_attention_layernorm(attention_output)
# Get residual
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = attention_output
# MLP.
output = self.mlp(layernorm_output) + residual
return output
class BloomModel(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
self.embed_dim = config.hidden_size
# Embedding + LN Embedding
self.word_embeddings = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
)
self.word_embeddings_layernorm = nn.LayerNorm(
self.embed_dim, eps=config.layer_norm_epsilon)
# Transformer blocks
self.h = nn.ModuleList(
[BloomBlock(config) for _ in range(config.num_hidden_layers)])
# Final Layer Norm
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(hidden_states)
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class BloomForCausalLM(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
self.config = config
self.transformer = BloomModel(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.transformer.word_embeddings.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = [
"word_embeddings.weight", "dense_h_to_4h.weight", "dense_h_to_4h.bias"
]
_row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if name == "lm_head.weight":
# Since hidden_states are parallelized, we need to
# load lm_head.weight in parallel.
self._column_parallel_weights.append(name)
# If lm_head is provided, use it instead.
param = self.lm_head_weight
else:
if not name.startswith("transformer."):
name = "transformer." + name
param = state_dict[name]
if "query_key_value" in name:
# NOTE(woosuk): BLOOM's fused QKV has the shape of
# [num_heads * 3 * head_size, hidden_size], while the
# required shape is [3 * num_heads * head_size, hidden_size].
# Thus, we need weight conversion.
shard_size = param.shape[0]
start = shard_size * tp_rank
end = shard_size * (tp_rank + 1)
loaded_weight = loaded_weight[start:end]
num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // num_heads
if "query_key_value.weight" in name:
loaded_weight = loaded_weight.view(-1, 3, head_size,
hidden_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif "query_key_value.bias" in name:
loaded_weight = loaded_weight.view(-1, 3, head_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1)
else:
raise ValueError(f"Unexpected weight name: {name}")
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights, tp_rank)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/a5cc30d72ae2dc19af534e4b35c986cc28db1275/src/transformers/models/falcon/modeling_falcon.py
# Copyright 2023 The vLLM team.
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Falcon model."""
import math
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import LayerNorm
from transformers import FalconConfig as HF_FalconConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import (PagedAttention,
PagedAttentionWithALiBi,
PagedAttentionWithRoPE)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (convert_pyslice_to_tensor,
hf_model_weights_iterator,
load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs import RWConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
FalconConfig = Union[HF_FalconConfig, RWConfig]
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during
# training, this means that there's one additional quantization to bfloat16
# between the operations. In order not to degrade the quality of our HF-port,
# we keep these characteristics in the final model.
class FalconLinear(nn.Linear):
def forward(self, x: torch.Tensor) -> torch.Tensor:
hidden_states = x @ self.weight.T
if self.bias is None:
return hidden_states
return hidden_states + self.bias
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
dtype=torch.float32)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != total_num_heads:
extra_base = torch.tensor(
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
dtype=torch.float32)
num_remaining_heads = min(closest_power_of_2,
total_num_heads - closest_power_of_2)
extra_powers = torch.arange(1,
1 + 2 * num_remaining_heads,
2,
dtype=torch.int32)
slopes = torch.cat(
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes
class FalconAttention(nn.Module):
def __init__(self, config: FalconConfig):
super().__init__()
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
self.new_decoder_architecture = config.new_decoder_architecture
self.multi_query = config.multi_query
if self.new_decoder_architecture:
self.total_num_kv_heads = config.num_kv_heads
assert self.total_num_heads % tp_size == 0
self.num_kv_heads = self.total_num_kv_heads // tp_size
self.query_key_value = ColumnParallelLinear(
self.hidden_size,
(self.total_num_heads + 2 * self.total_num_kv_heads) *
self.head_dim,
bias=config.bias,
gather_output=False,
skip_bias_add=True,
)
elif self.multi_query:
self.total_num_kv_heads = 1
self.num_kv_heads = 1
self.query = ColumnParallelLinear(
self.hidden_size,
self.total_num_heads * self.head_dim,
bias=config.bias,
gather_output=False,
skip_bias_add=True,
)
self.key_value = FalconLinear(self.hidden_size,
2 * self.head_dim,
bias=config.bias)
else:
self.total_num_kv_heads = self.total_num_heads
self.num_kv_heads = self.num_heads
self.query_key_value = ColumnParallelLinear(
self.hidden_size,
(self.total_num_heads + 2 * self.total_num_kv_heads) *
self.head_dim,
bias=config.bias,
gather_output=False,
skip_bias_add=True,
)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
self.reduce_row_parallel_results = not (config.new_decoder_architecture
or config.parallel_attn)
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=config.bias,
input_is_parallel=True,
skip_bias_add=True,
reduce_results=self.reduce_row_parallel_results)
self.use_rotary = config.rotary
self.use_alibi = config.alibi
assert not (self.use_rotary and self.use_alibi), (
"Rotary and alibi are mutually exclusive.")
if self.use_rotary:
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config,
"max_position_embeddings", 8192)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_dim,
self.inv_norm_factor,
base=rope_theta,
max_position=max_position_embeddings,
rotary_dim=self.head_dim,
num_kv_heads=self.num_kv_heads)
elif self.use_alibi:
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = (_get_alibi_slopes(self.total_num_heads) *
self.inv_norm_factor)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
self.attn = PagedAttentionWithALiBi(self.num_heads,
self.head_dim,
self.inv_norm_factor,
alibi_slopes,
num_kv_heads=self.num_kv_heads)
else:
self.attn = PagedAttention(self.num_heads,
self.head_dim,
scale=self.inv_norm_factor,
num_kv_heads=self.num_kv_heads)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
if not self.new_decoder_architecture and self.multi_query:
q, bias = self.query(hidden_states)
if bias is not None:
q += bias
kv = self.key_value(hidden_states)
k, v = kv.split([self.kv_size, self.kv_size], dim=-1)
else:
qkv, bias = self.query_key_value(hidden_states)
if bias is not None:
qkv += bias
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size],
dim=-1)
k_cache, v_cache = kv_cache
if self.use_rotary:
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
else:
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
cache_event)
attn_output, bias = self.dense(attn_output)
return attn_output, bias
class FalconMLP(nn.Module):
def __init__(self, config: FalconConfig):
super().__init__()
hidden_size = config.hidden_size
self.dense_h_to_4h = ColumnParallelLinear(hidden_size,
4 * hidden_size,
bias=config.bias,
gather_output=False,
skip_bias_add=True)
self.act = nn.GELU()
self.reduce_row_parallel_results = not (config.new_decoder_architecture
or config.parallel_attn)
self.dense_4h_to_h = RowParallelLinear(
4 * hidden_size,
hidden_size,
bias=config.bias,
input_is_parallel=True,
skip_bias_add=True,
reduce_results=self.reduce_row_parallel_results)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# NOTE(zhuohan): Following huggingface, we do not fuse bias add here.
x, bias = self.dense_h_to_4h(x)
if bias is not None:
x += bias
x = self.act(x)
x, bias = self.dense_4h_to_h(x)
return x, bias
class FalconDecoderLayer(nn.Module):
def __init__(self, config: FalconConfig):
super().__init__()
hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.self_attention = FalconAttention(config)
self.mlp = FalconMLP(config)
self.config = config
if config.new_decoder_architecture:
# The layer norm before self-attention
self.ln_attn = LayerNorm(hidden_size,
eps=config.layer_norm_epsilon)
# The layer norm before the MLP
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
self.input_layernorm = LayerNorm(hidden_size,
eps=config.layer_norm_epsilon)
if not config.parallel_attn:
self.post_attention_layernorm = LayerNorm(
hidden_size, eps=config.layer_norm_epsilon)
self.reduce_row_parallel_results = not (config.new_decoder_architecture
or config.parallel_attn)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
):
residual = hidden_states
if self.config.new_decoder_architecture:
attention_layernorm_out = self.ln_attn(hidden_states)
mlp_layernorm_out = self.ln_mlp(hidden_states)
else:
attention_layernorm_out = self.input_layernorm(hidden_states)
# Self attention.
attention_output, attention_bias = self.self_attention(
positions=positions,
hidden_states=attention_layernorm_out,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
if self.reduce_row_parallel_results and attention_bias is not None:
attention_output += attention_bias
if not self.config.new_decoder_architecture:
if self.config.parallel_attn:
mlp_layernorm_out = attention_layernorm_out
else:
residual += attention_output
mlp_layernorm_out = self.post_attention_layernorm(residual)
# MLP.
mlp_output, mlp_bias = self.mlp(mlp_layernorm_out)
if self.reduce_row_parallel_results and mlp_bias is not None:
mlp_output += mlp_bias
if not self.reduce_row_parallel_results:
# When MLP and Attention layers are parallel, we can use
# only one all-reduce operator to reduce the results from
# both MLP and Attention layers.
mlp_output += attention_output
mlp_output = tensor_model_parallel_all_reduce(mlp_output)
if attention_bias is not None:
mlp_output += attention_bias
if mlp_bias is not None:
mlp_output += mlp_bias
output = mlp_output + residual
return output
class FalconModel(nn.Module):
def __init__(self, config: FalconConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.use_alibi = config.alibi
# Embedding + LN Embedding
self.word_embeddings = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
)
# Transformer blocks
self.h = nn.ModuleList([
FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)
])
# Final Layer Norm
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.word_embeddings(input_ids)
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class FalconForCausalLM(nn.Module):
def __init__(self, config: FalconConfig):
super().__init__()
self.config = config
self.transformer = FalconModel(config)
self.lm_head = ColumnParallelLinear(
config.hidden_size,
config.vocab_size,
bias=False,
gather_output=False,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(
input_ids,
positions,
kv_caches,
input_metadata,
cache_events,
)
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = [
"word_embeddings.weight", "lm_head.weight", "dense_h_to_4h.weight",
"dense_h_to_4h.bias"
]
_row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tp_size = (get_tensor_model_parallel_world_size())
tp_rank = get_tensor_model_parallel_rank()
hidden_size = self.config.hidden_size
total_num_heads = self.config.num_attention_heads
num_heads = total_num_heads // tp_size
head_size = hidden_size // total_num_heads
head_start = tp_rank * num_heads
head_end = (tp_rank + 1) * num_heads
if self.config.new_decoder_architecture:
total_num_kv_heads = self.config.num_kv_heads
num_kv_heads = total_num_kv_heads // tp_size
separated_q_kv = False
kv_head_start = tp_rank * num_kv_heads
kv_head_end = (tp_rank + 1) * num_kv_heads
elif self.config.multi_query:
total_num_kv_heads = 1
num_kv_heads = 1
separated_q_kv = True
kv_head_start = 0
kv_head_end = 1
else:
total_num_kv_heads = total_num_heads
num_kv_heads = total_num_kv_heads // tp_size
separated_q_kv = False
kv_head_start = tp_rank * num_kv_heads
kv_head_end = (tp_rank + 1) * num_kv_heads
num_query_heads_per_kv_head = total_num_heads // total_num_kv_heads
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "query_key_value" in name:
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
loaded_weight_size = loaded_weight.size()
loaded_weight = loaded_weight.view(
total_num_kv_heads, num_query_heads_per_kv_head + 2,
head_size, *loaded_weight_size[1:])
wq = loaded_weight[:, :-2].reshape(-1, *loaded_weight_size[1:])
wk = loaded_weight[:, [-2]].reshape(-1,
*loaded_weight_size[1:])
wv = loaded_weight[:, [-1]].reshape(-1,
*loaded_weight_size[1:])
wq = wq[head_size * head_start:head_size * head_end]
wk = wk[head_size * kv_head_start:head_size * kv_head_end]
wv = wv[head_size * kv_head_start:head_size * kv_head_end]
if separated_q_kv:
loaded_weight_q = wq
loaded_weight_kv = torch.cat([wk, wv], dim=0)
q_weight_name = name.replace("query_key_value", "query")
kv_weight_name = name.replace("query_key_value",
"key_value")
load_tensor_parallel_weights(state_dict[q_weight_name],
loaded_weight_q,
q_weight_name,
self._column_parallel_weights,
self._row_parallel_weights,
tp_rank)
load_tensor_parallel_weights(state_dict[kv_weight_name],
loaded_weight_kv,
kv_weight_name,
self._column_parallel_weights,
self._row_parallel_weights,
tp_rank)
continue
else:
loaded_weight = torch.cat([wq, wk, wv], dim=0)
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights, tp_rank)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
# Copyright 2023 The vLLM team.
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-2 model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import GPT2Config
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (
convert_pyslice_to_tensor, hf_model_weights_iterator,
load_padded_tensor_parallel_vocab, load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPT2Attention(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
self.hidden_size = config.hidden_size
total_num_heads = config.num_attention_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = self.hidden_size // total_num_heads
self.scale = self.head_dim**-0.5
self.c_attn = ColumnParallelLinear(
self.hidden_size,
3 * self.hidden_size,
bias=True,
gather_output=False,
)
self.c_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
input_is_parallel=True,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
scale=self.scale)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(q, k, v, key_cache, value_cache,
input_metadata, cache_event)
attn_output, _ = self.c_proj(attn_output)
return attn_output
class GPT2MLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPT2Config,
):
super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
gather_output=False,
)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
input_is_parallel=True,
)
self.act = get_act_fn(config.activation_function)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class GPT2Block(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
hidden_size = config.hidden_size
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
hidden_size)
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPT2Attention(config)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPT2MLP(inner_dim, config)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states
class GPT2Model(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
self.config = config
assert not config.add_cross_attention
assert not config.scale_attn_by_inverse_layer_idx
assert not config.reorder_and_upcast_attn
self.embed_dim = config.hidden_size
# Optimization: While the vocab size of GPT-2 is 50257, we extend it
# to 50304 in order to make it divisible by 64.
# This improves performance since GPUs are faster if the dimension
# is divisible by 64. In addition, it allows us to shard the embedding
# layer across 2, 4, 8, or more GPUs.
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.wte = VocabParallelEmbedding(vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.h = nn.ModuleList(
[GPT2Block(config) for _ in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata,
cache_event)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPT2LMHeadModel(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
self.config = config
self.transformer = GPT2Model(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.transformer.wte.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = ["c_fc.weight", "c_fc.bias"]
_row_parallel_weights = ["c_proj.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "lm_head.weight" in name:
# GPT-2 ties the weights of the embedding layer and the final
# linear layer.
continue
if ".attn.bias" in name or ".attn.masked_bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
if not name.startswith("transformer."):
name = "transformer." + name
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
# Because of this, we need to transpose the weights.
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
if conv1d_weight_name not in name:
continue
if not name.endswith(".weight"):
continue
loaded_weight = loaded_weight.t()
param = state_dict[name]
if name == "transformer.wte.weight":
load_padded_tensor_parallel_vocab(param, loaded_weight,
tensor_model_parallel_rank)
continue
# For the fused QKV linear layer, manually shard the weights.
if "c_attn" in name:
# GPT-2's fused QKV has the shape of
# [3 * num_heads * head_size, hidden_size].
# When tensor parallelism is used, we shard the weights along
# the head dimension.
total_num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
num_heads = total_num_heads // tensor_model_parallel_world_size
head_start = tensor_model_parallel_rank * num_heads
head_end = (tensor_model_parallel_rank + 1) * num_heads
if name.endswith(".weight"):
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size, hidden_size)
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif name.endswith(".bias"):
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size)
loaded_weight = loaded_weight[:, head_start:head_end, :]
loaded_weight = loaded_weight.reshape(-1)
else:
raise ValueError(f"Unexpected parameter name {name}")
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
# Copyright 2023 The vLLM team.
# Copyright 2023 CTranslate2, and Michael Feil
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPTBigCode model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import GPTBigCodeConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (
convert_pyslice_to_tensor, hf_model_weights_iterator,
load_padded_tensor_parallel_vocab, load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPTBigCodeAttention(nn.Module):
def __init__(self, config: GPTBigCodeConfig):
super().__init__()
self.hidden_size = config.hidden_size
total_num_heads = config.num_attention_heads
self.tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert total_num_heads % self.tensor_model_parallel_world_size == 0
self.num_heads = (total_num_heads //
self.tensor_model_parallel_world_size)
self.head_dim = self.hidden_size // total_num_heads
self.scale = self.head_dim**-0.5
self.multi_query = config.multi_query
if self.multi_query:
self.num_kv_heads = 1
self.kv_dim = self.head_dim
self.c_attn_q = ColumnParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
gather_output=False,
)
self.c_attn_kv = nn.Linear(self.hidden_size,
2 * self.kv_dim,
bias=True)
else:
self.num_kv_heads = self.num_heads
self.kv_dim = self.num_kv_heads * self.head_dim
self.c_attn = ColumnParallelLinear(
self.hidden_size,
self.hidden_size + 2 * self.kv_dim,
bias=True,
gather_output=False,
)
self.c_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
input_is_parallel=True,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
scale=self.scale,
num_kv_heads=self.num_kv_heads)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
if self.multi_query:
q, _ = self.c_attn_q(hidden_states)
kv = self.c_attn_kv(hidden_states)
k, v = kv.split([self.kv_dim, self.kv_dim], dim=-1)
else:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.split([
self.hidden_size // self.tensor_model_parallel_world_size,
self.kv_dim, self.kv_dim
],
dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(q, k, v, key_cache, value_cache,
input_metadata, cache_event)
attn_output, _ = self.c_proj(attn_output)
return attn_output
class GPTBigMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPTBigCodeConfig,
):
super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
gather_output=False,
)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
input_is_parallel=True,
)
self.act = get_act_fn(config.activation_function)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class GPTBigCodeBlock(nn.Module):
def __init__(self, config: GPTBigCodeConfig):
super().__init__()
hidden_size = config.hidden_size
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
hidden_size)
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPTBigCodeAttention(config)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPTBigMLP(inner_dim, config)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states
class GPTBigCodeModel(nn.Module):
def __init__(self, config: GPTBigCodeConfig):
super().__init__()
self.config = config
assert not config.add_cross_attention
self.embed_dim = config.hidden_size
# Optimization: While the vocab size of GPT-2 is 50257, we extend it
# to 50304 in order to make it divisible by 64.
# This improves performance since GPUs are faster if the dimension
# is divisible by 64. In addition, it allows us to shard the embedding
# layer across 2, 4, 8, or more GPUs.
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.wte = VocabParallelEmbedding(vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.h = nn.ModuleList(
[GPTBigCodeBlock(config) for _ in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata,
cache_event)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPTBigCodeForCausalLM(nn.Module):
def __init__(self, config: GPTBigCodeConfig):
super().__init__()
self.config = config
self.transformer = GPTBigCodeModel(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.transformer.wte.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = ["c_fc.weight", "c_fc.bias"]
_row_parallel_weights = ["c_proj.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "lm_head.weight" in name:
# GPT-2 ties the weights of the embedding layer and the final
# linear layer.
continue
if ".attn.bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
if not name.startswith("transformer."):
name = "transformer." + name
# For the fused QKV linear layer, manually shard the weights.
if "c_attn" in name:
# GPT-2's fused QKV has the shape of
# [3 * num_heads * head_size, hidden_size].
# When tensor parallelism is used, we shard the weights along
# the head dimension.
total_num_heads = self.config.num_attention_heads
total_num_kv_heads = (1 if self.config.multi_query else
total_num_heads)
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
total_kv_size = head_size * total_num_kv_heads
num_heads = total_num_heads // tensor_model_parallel_world_size
head_start = tensor_model_parallel_rank * num_heads
head_end = (tensor_model_parallel_rank + 1) * num_heads
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
wq, wk, wv = torch.split(
loaded_weight, [hidden_size, total_kv_size, total_kv_size],
dim=0)
wq = wq[head_size * head_start:head_size * head_end]
if not self.config.multi_query:
# Split the heads when using normal multi-head attention
wk = wk[head_size * head_start:head_size * head_end]
wv = wv[head_size * head_start:head_size * head_end]
loaded_weight = torch.cat([wq, wk, wv], dim=0)
else:
# For multi-query attention, we split the query
# but replicate the key and value.
loaded_weight_q = wq
loaded_weight_kv = torch.cat([wk, wv], dim=0)
q_weight_name = name.replace("c_attn", "c_attn_q")
kv_weight_name = name.replace("c_attn", "c_attn_kv")
load_tensor_parallel_weights(state_dict[q_weight_name],
loaded_weight_q,
q_weight_name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
load_tensor_parallel_weights(state_dict[kv_weight_name],
loaded_weight_kv,
kv_weight_name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
continue
param = state_dict[name]
if name == "transformer.wte.weight":
load_padded_tensor_parallel_vocab(param, loaded_weight,
tensor_model_parallel_rank)
continue
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
# Copyright 2023 The vLLM team.
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-J model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import GPTJConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPTJAttention(nn.Module):
def __init__(self, config: GPTJConfig):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
self.qkv_proj = ColumnParallelLinear(
config.hidden_size,
3 * config.hidden_size,
bias=False,
gather_output=False,
)
self.out_proj = RowParallelLinear(
config.hidden_size,
config.hidden_size,
bias=False,
input_is_parallel=True,
)
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
scaling = self.head_size**-0.5
assert getattr(config, "rotary", True)
assert config.rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_size,
scaling,
config.rotary_dim,
base=rope_theta,
max_position=max_position_embeddings,
is_neox_style=False)
self.warmup = False
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(position_ids, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
attn_output, _ = self.out_proj(attn_output)
return attn_output
class GPTJMLP(nn.Module):
def __init__(self, intermediate_size: int, config: GPTJConfig):
super().__init__()
hidden_size = config.n_embd
self.fc_in = ColumnParallelLinear(
hidden_size,
intermediate_size,
gather_output=False,
)
self.fc_out = RowParallelLinear(
intermediate_size,
hidden_size,
input_is_parallel=True,
)
self.act = get_act_fn(config.activation_function)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc_out(hidden_states)
return hidden_states
class GPTJBlock(nn.Module):
def __init__(self, config: GPTJConfig):
super().__init__()
if config.n_inner is None:
inner_dim = 4 * config.n_embd
else:
inner_dim = config.n_inner
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = GPTJAttention(config)
self.mlp = GPTJMLP(inner_dim, config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
mlp_output = self.mlp(hidden_states)
hidden_states = attn_output + mlp_output + residual
return hidden_states
class GPTJModel(nn.Module):
def __init__(self, config: GPTJConfig):
super().__init__()
self.config = config
self.embed_dim = config.n_embd
self.wte = VocabParallelEmbedding(
config.vocab_size,
self.embed_dim,
)
self.h = nn.ModuleList(
[GPTJBlock(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPTJForCausalLM(nn.Module):
def __init__(self, config: GPTJConfig):
super().__init__()
self.config = config
assert not config.tie_word_embeddings
self.transformer = GPTJModel(config)
self.lm_head = ColumnParallelLinear(
config.n_embd,
config.vocab_size,
gather_output=False,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
input_metadata, self.lm_head.bias)
return next_tokens
_column_parallel_weights = [
"wte.weight", "fc_in.weight", "fc_in.bias", "lm_head.weight",
"lm_head.bias"
]
_row_parallel_weights = ["out_proj.weight", "fc_out.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "attn.bias" in name or "attn.masked_bias" in name:
continue
is_attention_weight = False
for stride_id, att_weight_name in enumerate(
["q_proj", "k_proj", "v_proj"]):
if att_weight_name not in name:
continue
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
shard_size = param.shape[1]
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
(tp_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_attention_weight = True
break
if is_attention_weight:
continue
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights, tp_rank)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-NeoX model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import GPTNeoXConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPTNeoXAttention(nn.Module):
def __init__(self, config: GPTNeoXConfig):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.query_key_value = ColumnParallelLinear(
config.hidden_size,
3 * config.hidden_size,
gather_output=False,
)
self.dense = RowParallelLinear(
config.hidden_size,
config.hidden_size,
input_is_parallel=True,
)
scaling = self.head_size**-0.5
rotary_dim = int(self.head_size * config.rotary_pct)
assert rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_size,
scaling,
rotary_dim,
base=rope_theta,
max_position=max_position_embeddings)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(position_ids, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.dense(attn_output)
return output
class GPTNeoXMLP(nn.Module):
def __init__(self, config: GPTNeoXConfig):
super().__init__()
self.dense_h_to_4h = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
gather_output=False,
)
self.dense_4h_to_h = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
input_is_parallel=True,
)
self.act = get_act_fn(config.hidden_act)
def forward(self, hidden_states):
hidden_states, _ = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.dense_4h_to_h(hidden_states)
return hidden_states
class GPTNeoXLayer(nn.Module):
def __init__(self, config: GPTNeoXConfig):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.attention = GPTNeoXAttention(config)
self.mlp = GPTNeoXMLP(config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
attn_input = self.input_layernorm(hidden_states)
attn_output = self.attention(
position_ids=position_ids,
hidden_states=attn_input,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_input = self.post_attention_layernorm(hidden_states)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_input = self.post_attention_layernorm(attn_output)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output
return hidden_states
class GPTNeoXModel(nn.Module):
def __init__(self, config: GPTNeoXConfig):
super().__init__()
self.config = config
self.embed_in = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList(
[GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)])
self.final_layer_norm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.embed_in(input_ids)
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class GPTNeoXForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gpt_neox = GPTNeoXModel(config)
self.embed_out = ColumnParallelLinear(
config.hidden_size,
config.vocab_size,
bias=False,
gather_output=False,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.gpt_neox(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.embed_out.weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = [
"embed_in.weight", "embed_out.weight", "dense_h_to_4h.weight",
"dense_h_to_4h.bias"
]
_row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if ("attention.bias" in name or "attention.masked_bias" in name
or "rotary_emb.inv_freq" in name):
continue
param = state_dict[name]
if "query_key_value" in name:
# NOTE(woosuk): GPT-NeoX's fused QKV has the shape of
# [num_heads * 3 * head_size, hidden_size], while the
# required shape is [3 * num_heads * head_size, hidden_size].
# Thus, we need weight conversion.
shard_size = param.shape[0]
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // num_heads
if "query_key_value.weight" in name:
loaded_weight = loaded_weight.view(-1, 3, head_size,
hidden_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif "query_key_value.bias" in name:
loaded_weight = loaded_weight.view(-1, 3, head_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1)
else:
raise ValueError(f"Unexpected weight name: {name}")
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
# -*- coding: utf-8 -*-
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (ColumnParallelLinear,
RowParallelLinear,
VocabParallelEmbedding)
from vllm.model_executor.weight_utils import (
hf_model_weights_iterator, load_padded_tensor_parallel_vocab,
load_tensor_parallel_weights)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class InternLMMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_up_proj = ColumnParallelLinear(
hidden_size,
2 * intermediate_size,
bias=False,
gather_output=False,
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
input_is_parallel=True,
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class InternLMAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
rope_theta: float = 10000,
max_position_embeddings: int = 8192,
):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = hidden_size // self.total_num_heads
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = ColumnParallelLinear(
hidden_size,
3 * self.total_num_heads * self.head_dim,
bias=True,
gather_output=False,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=True,
input_is_parallel=True,
)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_dim,
self.scaling,
base=self.rope_theta,
max_position=self.max_position_embeddings,
rotary_dim=self.head_dim)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.o_proj(attn_output)
return output
class InternLMDecoderLayer(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.self_attn = InternLMAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
rope_theta=rope_theta,
max_position_embeddings=max_position_embeddings,
)
self.mlp = InternLMMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class InternLMModel(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.embed_tokens = VocabParallelEmbedding(
vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
InternLMDecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class InternLMForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model = InternLMModel(config)
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.lm_head = ColumnParallelLinear(
config.hidden_size,
vocab_size,
bias=False,
gather_output=False,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = [
"qkv_proj.weight", "gate_proj.weight", "up_proj.weight"
]
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
if "embed_tokens" in name or "lm_head" in name:
param = state_dict[name]
load_padded_tensor_parallel_vocab(param, loaded_weight,
tensor_model_parallel_rank)
continue
is_attention_weight = False
for stride_id, att_weight_name in enumerate(
["q_proj", "k_proj", "v_proj"]):
if att_weight_name not in name:
continue
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
shard_size = param.shape[0] // 3
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_attention_weight = True
break
if is_attention_weight:
continue
is_gate_up_weight = False
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_gate_up_weight = True
break
if is_gate_up_weight:
continue
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only LLaMA model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.quantized_linear import ParallelLinear
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import VocabParallelEmbedding
from vllm.model_executor.quantization_utils import QuantizationConfig
from vllm.model_executor.weight_utils import (
convert_pyslice_to_tensor, hf_model_weights_iterator,
load_tensor_parallel_weights, load_padded_tensor_parallel_vocab)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class LlamaMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.gate_up_proj = ParallelLinear.column(hidden_size,
2 * intermediate_size,
bias=False,
gather_output=False,
quant_config=quant_config)
self.down_proj = ParallelLinear.row(intermediate_size,
hidden_size,
bias=False,
input_is_parallel=True,
quant_config=quant_config)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class LlamaAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
num_kv_heads_replicas = max(1, tp_size // self.total_num_kv_heads)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = ParallelLinear.column(
hidden_size,
(self.total_num_heads +
2 * self.total_num_kv_heads * num_kv_heads_replicas) *
self.head_dim,
bias=False,
gather_output=False,
quant_config=quant_config,
)
self.o_proj = ParallelLinear.row(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
input_is_parallel=True,
quant_config=quant_config,
)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_dim,
self.scaling,
base=self.rope_theta,
max_position=self.max_position_embeddings,
rotary_dim=self.head_dim,
num_kv_heads=self.num_kv_heads,
rope_scaling=rope_scaling)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.o_proj(attn_output)
return output
class LlamaDecoderLayer(nn.Module):
def __init__(
self,
config: LlamaConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.self_attn = LlamaAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
)
self.mlp = LlamaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class LlamaModel(nn.Module):
def __init__(
self,
config: LlamaConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.embed_tokens = VocabParallelEmbedding(
vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
LlamaDecoderLayer(config, quant_config)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class LlamaForCausalLM(nn.Module):
def __init__(
self,
config: LlamaConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = LlamaModel(config, quant_config)
vocab_size = ((config.vocab_size + 63) // 64) * 64
# NOTE: The LM head is not quantized.
self.lm_head = ParallelLinear.column(config.hidden_size,
vocab_size,
bias=False,
gather_output=False,
quant_config=None)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_layers = []
_row_parallel_layers = ["o_proj", "down_proj"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
if self.quant_config is None:
weight_suffixes = ["weight"]
else:
weight_suffixes = self.quant_config.get_tp_tensor_names()
column_parallel_weights: List[str] = []
for layer in self._column_parallel_layers:
for suffix in weight_suffixes:
column_parallel_weights.append(f"{layer}.{suffix}")
row_parallel_weights: List[str] = []
for layer in self._row_parallel_layers:
for suffix in weight_suffixes:
row_parallel_weights.append(f"{layer}.{suffix}")
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
q_proj_shard_size = (self.config.hidden_size // tp_size)
num_kv_heads_replicas = max(1,
tp_size // self.config.num_key_value_heads)
num_kv_heads_per_gpu = max(1,
self.config.num_key_value_heads // tp_size)
kv_proj_shard_size = (self.config.hidden_size //
self.config.num_attention_heads *
num_kv_heads_per_gpu)
attention_weight_specs = [
# (weight_name, shard_size, offset)
("q_proj", q_proj_shard_size, 0),
("k_proj", kv_proj_shard_size, q_proj_shard_size),
("v_proj", kv_proj_shard_size,
q_proj_shard_size + kv_proj_shard_size),
]
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
is_packed = False
is_transposed = False
if self.quant_config is not None:
is_packed = self.quant_config.is_packed(name)
is_transposed = self.quant_config.is_transposed(name)
if is_transposed:
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
loaded_weight = loaded_weight.T
is_attention_weight = False
for weight_name, shard_size, offset in attention_weight_specs:
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "qkv_proj")]
if is_transposed:
param = param.T
if is_packed:
shard_size //= self.quant_config.pack_factor
offset //= self.quant_config.pack_factor
if weight_name in ["k_proj", "v_proj"]:
shard_id = tp_rank // num_kv_heads_replicas
else:
shard_id = tp_rank
loaded_weight = loaded_weight[shard_size *
shard_id:shard_size *
(shard_id + 1)]
param_slice = param.data[offset:offset + shard_size]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_attention_weight = True
break
if is_attention_weight:
continue
is_gate_up_weight = False
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
if is_transposed:
param = param.T
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
(tp_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_gate_up_weight = True
break
if is_gate_up_weight:
continue
param = state_dict[name]
if is_transposed:
param = param.T
if "embed_tokens" in name or "lm_head" in name:
load_padded_tensor_parallel_vocab(param, loaded_weight,
tp_rank)
continue
load_tensor_parallel_weights(param, loaded_weight, name,
column_parallel_weights,
row_parallel_weights, tp_rank)
# coding=utf-8
# Adapted from https://huggingface.co/mosaicml/mpt-7b/tree/main
import math
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttentionWithALiBi
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (convert_pyslice_to_tensor,
hf_model_weights_iterator,
load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.mpt import MPTConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
def _get_alibi_slopes(
total_num_heads: int,
alibi_bias_max: int,
) -> torch.Tensor:
next_power_of_2 = 2**math.ceil(math.log2(total_num_heads))
m = torch.arange(1, next_power_of_2 + 1, dtype=torch.float32)
m = m.mul(alibi_bias_max / next_power_of_2)
slopes = 1.0 / torch.pow(2, m)
if next_power_of_2 != total_num_heads:
slopes = torch.concat([slopes[1::2], slopes[::2]])[:total_num_heads]
return slopes
class MPTAttention(nn.Module):
def __init__(self, config: MPTConfig):
super().__init__()
self.d_model = config.d_model
self.total_num_heads = config.n_heads
self.clip_qkv = config.attn_config["clip_qkv"]
self.qk_ln = config.attn_config["qk_ln"]
self.alibi_bias_max = config.attn_config["alibi_bias_max"]
assert not config.attn_config["prefix_lm"]
assert config.attn_config["alibi"]
self.qkv_proj = ColumnParallelLinear(
self.d_model,
3 * self.d_model,
bias=not config.no_bias,
gather_output=False,
)
if self.qk_ln:
self.q_ln = nn.LayerNorm(self.d_model)
self.k_ln = nn.LayerNorm(self.d_model)
self.out_proj = RowParallelLinear(
self.d_model,
self.d_model,
bias=not config.no_bias,
input_is_parallel=True,
)
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
# Create the alibi slopes and slice them.
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads,
self.alibi_bias_max)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
self.head_dim = self.d_model // self.total_num_heads
scaling = self.head_dim**-0.5
self.attn = PagedAttentionWithALiBi(self.num_heads, self.head_dim,
scaling, alibi_slopes)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
del position_ids # unused.
qkv, _ = self.qkv_proj(hidden_states)
if self.clip_qkv is not None:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
q, k, v = qkv.chunk(chunks=3, dim=-1)
if self.qk_ln:
q = self.q_ln(q)
k = self.k_ln(k)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
cache_event)
output, _ = self.out_proj(attn_output)
return output
class MPTMLP(nn.Module):
def __init__(self, config: MPTConfig):
super().__init__()
hidden_size = config.d_model
expansion_ratio = config.expansion_ratio
intermediate_size = expansion_ratio * hidden_size
self.up_proj = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=not config.no_bias,
gather_output=False,
)
self.act = get_act_fn("gelu")
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=not config.no_bias,
input_is_parallel=True,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.up_proj(x)
x = self.act(x)
x, _ = self.down_proj(x)
return x
class MPTBlock(nn.Module):
def __init__(self, config: MPTConfig):
super().__init__()
hidden_size = config.d_model
self.norm_1 = nn.LayerNorm(hidden_size)
self.attn = MPTAttention(config)
self.norm_2 = nn.LayerNorm(hidden_size)
self.ffn = MPTMLP(config)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
x = self.norm_1(hidden_states)
x = self.attn(
position_ids=position_ids,
hidden_states=x,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
hidden_states = hidden_states + x
x = self.norm_2(hidden_states)
x = self.ffn(x)
hidden_states = hidden_states + x
return hidden_states
class MPTModel(nn.Module):
def __init__(self, config: MPTConfig):
super().__init__()
assert config.embedding_fraction == 1.0
assert config.norm_type == "low_precision_layernorm"
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.d_model,
)
self.blocks = nn.ModuleList(
[MPTBlock(config) for _ in range(config.n_layers)])
self.norm_f = nn.LayerNorm(config.d_model)
if config.no_bias:
for module in self.modules():
if hasattr(module, "bias"):
if isinstance(module.bias, nn.Parameter):
# Remove the bias term in Linear and LayerNorm.
module.register_parameter("bias", None)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.blocks)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
block = self.blocks[i]
hidden_states = block(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.norm_f(hidden_states)
return hidden_states
class MPTForCausalLM(nn.Module):
def __init__(self, config: MPTConfig):
super().__init__()
self.config = config
assert config.tie_word_embeddings
self.transformer = MPTModel(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.transformer.wte.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = ["wte.weight", "up_proj.weight", "up_proj.bias"]
_row_parallel_weights = ["out_proj.weight", "down_proj.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tp_world_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "Wqkv" in name:
# NOTE(woosuk): MPT's fused QKV has the shape of
# [3 * num_heads * head_size, hidden_size].
# When tensor model parallelism is used, we need to shard
# the weight along the hidden dimension.
total_num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
num_heads = total_num_heads // tp_world_size
head_start = tp_rank * num_heads
head_end = (tp_rank + 1) * num_heads
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
if name.endswith(".weight"):
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size, hidden_size)
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif name.endswith(".bias"):
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size)
loaded_weight = loaded_weight[:, head_start:head_end, :]
loaded_weight = loaded_weight.reshape(-1)
else:
raise ValueError(f"Unexpected parameter name {name}")
name = name.replace("Wqkv", "qkv_proj")
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights, tp_rank)
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py
# Copyright 2023 The vLLM team.
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only OPT model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import OPTConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class OPTLearnedPositionalEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the
# embedding ids by 2 and adjust num_embeddings appropriately. Other
# models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, positions: torch.Tensor):
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
) -> None:
super().__init__()
self.embed_dim = embed_dim
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
total_num_heads = num_heads
assert num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = embed_dim // total_num_heads
self.scaling = self.head_dim**-0.5
self.qkv_proj = ColumnParallelLinear(
embed_dim,
3 * embed_dim,
bias=bias,
gather_output=False,
)
self.out_proj = RowParallelLinear(
embed_dim,
embed_dim,
bias=bias,
input_is_parallel=True,
)
self.attn = PagedAttention(self.num_heads,
self.head_dim,
scale=self.scaling)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(q, k, v, key_cache, value_cache,
input_metadata, cache_event)
output, _ = self.out_proj(attn_output)
return output
class OPTDecoderLayer(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.self_attn = OPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
bias=config.enable_bias,
)
self.do_layer_norm_before = config.do_layer_norm_before
self.activation_fn = get_act_fn(config.activation_function)
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim,
elementwise_affine=config.layer_norm_elementwise_affine)
self.fc1 = ColumnParallelLinear(
self.embed_dim,
config.ffn_dim,
bias=config.enable_bias,
gather_output=False,
)
self.fc2 = RowParallelLinear(
config.ffn_dim,
self.embed_dim,
bias=config.enable_bias,
input_is_parallel=True,
)
self.final_layer_norm = nn.LayerNorm(
self.embed_dim,
elementwise_affine=config.layer_norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class OPTDecoder(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.word_embed_proj_dim,
)
# Positional embeddings are replicated (not sharded).
self.embed_positions = OPTLearnedPositionalEmbedding(
config.max_position_embeddings, config.hidden_size)
# Project out & in will be replicated if they exist.
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = nn.Linear(config.hidden_size,
config.word_embed_proj_dim,
bias=False)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = nn.Linear(config.word_embed_proj_dim,
config.hidden_size,
bias=False)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to
# keep backward compatibility with checkpoints that have been fine-tuned
# before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size,
elementwise_affine=config.layer_norm_elementwise_affine)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList(
[OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(hidden_states, kv_caches[i], input_metadata,
cache_event)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
return hidden_states
class OPTModel(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
self.decoder = OPTDecoder(config)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
return self.decoder(input_ids, positions, kv_caches, input_metadata,
cache_events)
class OPTForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model = OPTModel(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.model.decoder.embed_tokens.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = [
"embed_tokens.weight", "fc1.weight", "fc1.bias"
]
_row_parallel_weights = ["out_proj.weight", "fc2.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "lm_head.weight" in name:
continue
if name.startswith("decoder."):
name = "model." + name
is_attention_weight = False
for stride_id, att_weight_name in enumerate(
["q_proj", "k_proj", "v_proj"]):
if att_weight_name not in name:
continue
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
shard_size = param.shape[0] // 3
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_attention_weight = True
break
if is_attention_weight:
continue
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
# coding=utf-8
# Adapted from
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
"""Inference-only QWen model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (
convert_pyslice_to_tensor,
hf_model_weights_iterator,
load_padded_tensor_parallel_vocab,
load_tensor_parallel_weights,
)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.parallel_utils.layers import (
VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear,
)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.qwen import QWenConfig
KVCache = Tuple[torch.Tensor, torch.Tensor]
class QWenMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str = "silu",
):
super().__init__()
self.gate_up_proj = ColumnParallelLinear(
hidden_size,
2 * intermediate_size,
bias=False,
gather_output=False,
)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
input_is_parallel=True,
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.c_proj(x)
return x
class QWenAttention(nn.Module):
def __init__(self,
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
)
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = hidden_size // self.total_num_heads
# pylint: disable=invalid-name
self.c_attn = ColumnParallelLinear(
hidden_size,
3 * hidden_size,
bias=True,
gather_output=False,
)
self.c_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
input_is_parallel=True,
)
self.scaling = self.head_dim**-0.5
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_dim,
self.scaling,
rotary_dim=self.head_dim,
base=rope_theta,
max_position=max_position_embeddings,
rope_scaling=rope_scaling)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.c_proj(attn_output)
return output
class QWenBlock(nn.Module):
def __init__(self, config: QWenConfig):
super().__init__()
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
self.attn = QWenAttention(config.hidden_size,
config.num_attention_heads,
config.max_position_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling)
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mlp = QWenMLP(config.hidden_size, config.intermediate_size // 2)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
hidden_states = self.attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class QWenModel(nn.Module):
def __init__(self, config: QWenConfig):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.wte = VocabParallelEmbedding(
vocab_size,
config.hidden_size,
)
self.h = nn.ModuleList(
[QWenBlock(config) for _ in range(config.num_hidden_layers)])
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class QWenLMHeadModel(nn.Module):
def __init__(self, config: QWenConfig):
super().__init__()
self.config = config
self.transformer = QWenModel(config)
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.lm_head = ColumnParallelLinear(
config.hidden_size,
vocab_size,
bias=False,
gather_output=False,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = []
_row_parallel_weights = ["c_proj.weight"]
def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
):
tp_world_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
if "c_attn" in name:
total_num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
num_heads = total_num_heads // tp_world_size
head_start = tp_rank * num_heads
head_end = (tp_rank + 1) * num_heads
if "weight" in name:
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size, hidden_size)
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif "bias" in name:
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size)
loaded_weight = loaded_weight[:, head_start:head_end, :]
loaded_weight = loaded_weight.reshape(-1)
is_gate_up_weight = False
for stride_id, weight_name in enumerate(["w2", "w1"]):
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
(tp_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_gate_up_weight = True
break
if is_gate_up_weight:
continue
param = state_dict[name]
if "wte" in name or "lm_head" in name:
load_padded_tensor_parallel_vocab(param, loaded_weight,
tp_rank)
continue
load_tensor_parallel_weights(
param,
loaded_weight,
name,
self._column_parallel_weights,
self._row_parallel_weights,
tp_rank,
)
The files in this folder are ported from [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/core). We only keep the codes that are used in inference.
\ No newline at end of file
import torch
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size,
get_tensor_model_parallel_group,
)
def tensor_model_parallel_all_reduce(input_):
"""All-reduce the input tensor across model parallel group.
NOTE: This operation is applied in-place on the input tensor.
"""
# Bypass the function if we are using only 1 GPU.
if get_tensor_model_parallel_world_size() == 1:
return input_
# All-reduce.
torch.distributed.all_reduce(input_,
group=get_tensor_model_parallel_group())
return input_
def tensor_model_parallel_all_gather(input_, dim=-1):
"""All-gather the input tensor across model parallel group."""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
input_size = input_.size()
# Allocate output tensor.
output_tensor = torch.empty((world_size, ) + input_size,
dtype=input_.dtype,
device=input_.device)
# All-gather.
torch.distributed.all_gather_into_tensor(
output_tensor, input_, group=get_tensor_model_parallel_group())
# Reshape
output_tensor = output_tensor.movedim(0, dim)
output_tensor = output_tensor.reshape(input_size[:dim] +
(world_size * input_size[dim], ) +
input_size[dim + 1:])
return output_tensor
# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/layers.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch
from typing import Optional
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.quantization_utils import QuantizationConfig
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce, tensor_model_parallel_all_gather)
from vllm.model_executor.parallel_utils.utils import (
divide,
VocabUtility,
split_tensor_along_last_dim,
)
class VocabParallelEmbedding(torch.nn.Module):
"""Embedding parallelized in the vocabulary dimension.
This is mainly adapted from torch.nn.Embedding and all the default
values are kept.
Arguments:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
params_dtype: type of the parameters.
"""
def __init__(self,
num_embeddings: int,
embedding_dim: int,
params_dtype: Optional[torch.dtype] = None):
super().__init__()
# Keep the input dimensions.
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.tp_size = get_tensor_model_parallel_world_size()
# TODO: Handle vocab padding here.
# Divide the weight matrix along the vocaburaly dimension.
self.vocab_start_index, self.vocab_end_index = (
VocabUtility.vocab_range_from_global_vocab_size(
self.num_embeddings, get_tensor_model_parallel_rank(),
self.tp_size))
self.num_embeddings_per_partition = (self.vocab_end_index -
self.vocab_start_index)
self.weight = Parameter(
torch.empty(self.num_embeddings_per_partition,
self.embedding_dim,
device=torch.cuda.current_device(),
dtype=params_dtype))
def forward(self, input_):
if self.tp_size > 1:
# Build the mask.
input_mask = ((input_ < self.vocab_start_index) |
(input_ >= self.vocab_end_index))
# Mask the input.
masked_input = input_.clone() - self.vocab_start_index
masked_input[input_mask] = 0
else:
masked_input = input_
# Get the embeddings.
output_parallel = F.embedding(masked_input, self.weight)
# Mask the output embedding.
if self.tp_size > 1:
output_parallel[input_mask, :] = 0.0
# Reduce across all the model parallel GPUs.
output = tensor_model_parallel_all_reduce(output_parallel)
return output
class ColumnParallelLinear(torch.nn.Module):
"""Linear layer with column parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its second dimension as A = [A_1, ..., A_p].
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
Keyword Arguments
bias: If true, add bias
gather_output: If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is Y_i = XA_i
skip_bias_add: This was added to enable performance optimizations where
bias can be fused with other element-wise operations. we
skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configuration.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
gather_output: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.gather_output = gather_output
# Divide the weight matrix along the last dimension.
self.tp_size = get_tensor_model_parallel_world_size()
self.output_size_per_partition = divide(output_size, self.tp_size)
self.skip_bias_add = skip_bias_add
self.quant_config = quant_config
if params_dtype is None:
params_dtype = torch.get_default_dtype()
# Parameters.
# NOTE: torch.nn.functional.linear performs XA^T + b and as a result
# we allocate the transpose.
self.create_weights(params_dtype)
if bias:
self.bias = Parameter(
torch.empty(self.output_size_per_partition,
device=torch.cuda.current_device(),
dtype=params_dtype))
else:
self.register_parameter('bias', None)
def create_weights(self, dtype: torch.dtype) -> None:
self.weight = Parameter(
torch.empty(self.output_size_per_partition,
self.input_size,
device=torch.cuda.current_device(),
dtype=dtype))
def apply_weights(
self,
x: torch.Tensor,
bias: Optional[torch.Tensor],
) -> torch.Tensor:
return F.linear(x, self.weight, bias)
def forward(self, input_):
"""Forward of ColumnParallelLinear
Args:
input_: Tensor whose last dimension is `input_size`.
Returns:
- output
- bias
"""
bias = self.bias if not self.skip_bias_add else None
input_parallel = input_
# Matrix multiply.
output_parallel = self.apply_weights(input_parallel, bias)
if self.gather_output:
# All-gather across the partitions.
output = tensor_model_parallel_all_gather(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
return output, output_bias
class RowParallelLinear(torch.nn.Module):
"""Linear layer with row parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its first dimension and X along its second dimension as:
- -
| A_1 |
| . |
A = | . | X = [X_1, ..., X_p]
| . |
| A_p |
- -
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
Keyword Arguments:
bias: If true, add bias. Note that bias is not parallelized.
input_is_parallel: If true, we assume that the input is already
split across the GPUs and we do not split
again.
skip_bias_add: This was added to enable performance optimization where
bias can be fused with other element-wise operations.
We skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configuration.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
input_is_parallel: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = True,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.input_is_parallel = input_is_parallel
self.reduce_results = reduce_results
if params_dtype is None:
params_dtype = torch.get_default_dtype()
# Divide the weight matrix along the last dimension.
self.tp_size = get_tensor_model_parallel_world_size()
self.input_size_per_partition = divide(input_size, self.tp_size)
self.skip_bias_add = skip_bias_add
self.quant_config = quant_config
self.create_weights(params_dtype)
if not reduce_results and (bias and not skip_bias_add):
raise ValueError('When not reduce the results, adding bias to the '
'results can lead to incorrect results')
if bias:
self.bias = Parameter(
torch.empty(self.output_size,
device=torch.cuda.current_device(),
dtype=params_dtype))
# Always initialize bias to zero.
with torch.no_grad():
self.bias.zero_()
else:
self.register_parameter('bias', None)
def create_weights(self, dtype: torch.dtype) -> None:
self.weight = Parameter(
torch.empty(self.output_size,
self.input_size_per_partition,
device=torch.cuda.current_device(),
dtype=dtype))
def apply_weights(self, x: torch.Tensor) -> torch.Tensor:
return F.linear(x, self.weight)
def forward(self, input_):
"""Forward of RowParallelLinear
Args:
input_: tensor whose last dimension is `input_size`. If
`input_is_parallel` is set, then the last dimension
is `input_size // tp_size`.
Returns:
- output
- bias
"""
# Set up backprop all-reduce.
if self.input_is_parallel:
input_parallel = input_
else:
# TODO: simplify code below
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
output_parallel = self.apply_weights(input_parallel)
if self.reduce_results and self.tp_size > 1:
output_ = tensor_model_parallel_all_reduce(output_parallel)
else:
output_ = output_parallel
if not self.skip_bias_add:
output = output_ + self.bias if self.bias is not None else output_
output_bias = None
else:
output = output_
output_bias = self.bias
return output, output_bias
# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Model and data parallel groups."""
import torch
# Tensor model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Pipeline model parallel group that the current rank belongs to.
_PIPELINE_MODEL_PARALLEL_GROUP = None
# A list of global ranks for each pipeline group to ease calculation of the
# source rank when broadcasting from the first or last pipeline stage.
_PIPELINE_GLOBAL_RANKS = None
def initialize_model_parallel(
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
) -> None:
"""
Initialize model parallel groups.
Arguments:
tensor_model_parallel_size: number of GPUs used for tensor model
parallelism.
pipeline_model_parallel_size: number of GPUs used for pipeline model
parallelism.
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
the model pipeline. The present function will
create 4 tensor model-parallel groups and 2 pipeline model-parallel groups:
4 tensor model-parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7]
2 pipeline model-parallel groups:
[g0, g2, g4, g6], [g1, g3, g5, g7]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
world_size: int = torch.distributed.get_world_size()
if (world_size !=
tensor_model_parallel_size * pipeline_model_parallel_size):
raise RuntimeError(
f"world_size ({world_size}) is not equal to "
f"tensor_model_parallel_size ({tensor_model_parallel_size}) x "
f"pipeline_model_parallel_size ({pipeline_model_parallel_size})")
num_tensor_model_parallel_groups: int = (world_size //
tensor_model_parallel_size)
num_pipeline_model_parallel_groups: int = (world_size //
pipeline_model_parallel_size)
rank = torch.distributed.get_rank()
# Build the tensor model-parallel groups.
global _TENSOR_MODEL_PARALLEL_GROUP
assert _TENSOR_MODEL_PARALLEL_GROUP is None, (
"tensor model parallel group is already initialized")
for i in range(num_tensor_model_parallel_groups):
ranks = range(i * tensor_model_parallel_size,
(i + 1) * tensor_model_parallel_size)
group = torch.distributed.new_group(ranks)
if rank in ranks:
_TENSOR_MODEL_PARALLEL_GROUP = group
# Build the pipeline model-parallel groups.
global _PIPELINE_MODEL_PARALLEL_GROUP
global _PIPELINE_GLOBAL_RANKS
assert _PIPELINE_MODEL_PARALLEL_GROUP is None, (
"pipeline model parallel group is already initialized")
for i in range(num_pipeline_model_parallel_groups):
ranks = range(i, world_size, num_pipeline_model_parallel_groups)
group = torch.distributed.new_group(ranks)
if rank in ranks:
_PIPELINE_MODEL_PARALLEL_GROUP = group
_PIPELINE_GLOBAL_RANKS = ranks
def model_parallel_is_initialized():
"""Check if model and data parallel groups are initialized."""
return (_TENSOR_MODEL_PARALLEL_GROUP is not None
and _PIPELINE_MODEL_PARALLEL_GROUP is not None)
def get_tensor_model_parallel_group():
"""Get the tensor model parallel group the caller rank belongs to."""
assert _TENSOR_MODEL_PARALLEL_GROUP is not None, (
"tenosr model parallel group is not initialized")
return _TENSOR_MODEL_PARALLEL_GROUP
def get_pipeline_model_parallel_group():
"""Get the pipeline model parallel group the caller rank belongs to."""
assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, (
"pipeline model parallel group is not initialized")
return _PIPELINE_MODEL_PARALLEL_GROUP
def get_tensor_model_parallel_world_size():
"""Return world size for the tensor model parallel group."""
return torch.distributed.get_world_size(
group=get_tensor_model_parallel_group())
def get_pipeline_model_parallel_world_size():
"""Return world size for the pipeline model parallel group."""
return torch.distributed.get_world_size(
group=get_pipeline_model_parallel_group())
def get_tensor_model_parallel_rank():
"""Return my rank for the tensor model parallel group."""
return torch.distributed.get_rank(group=get_tensor_model_parallel_group())
def get_pipeline_model_parallel_rank():
"""Return my rank for the pipeline model parallel group."""
return torch.distributed.get_rank(
group=get_pipeline_model_parallel_group())
def get_tensor_model_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank
in the tensor model parallel group."""
global_rank = torch.distributed.get_rank()
local_world_size = get_tensor_model_parallel_world_size()
return (global_rank // local_world_size) * local_world_size
def get_pipeline_model_parallel_first_rank():
"""Return the global rank of the first process in the pipeline for the
current tensor parallel group"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
return _PIPELINE_GLOBAL_RANKS[0]
def get_pipeline_model_parallel_last_rank():
"""Return the global rank of the last process in the pipeline for the
current tensor parallel group"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
last_rank_local = get_pipeline_model_parallel_world_size() - 1
return _PIPELINE_GLOBAL_RANKS[last_rank_local]
def get_pipeline_model_parallel_next_rank():
"""Return the global rank that follows the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size]
def get_pipeline_model_parallel_prev_rank():
"""Return the global rank that preceeds the caller in the pipeline"""
assert _PIPELINE_GLOBAL_RANKS is not None, (
"Pipeline parallel group is not initialized")
rank_in_pipeline = get_pipeline_model_parallel_rank()
world_size = get_pipeline_model_parallel_world_size()
return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size]
def destroy_model_parallel():
"""Set the groups to none."""
global _TENSOR_MODEL_PARALLEL_GROUP
_TENSOR_MODEL_PARALLEL_GROUP = None
global _PIPELINE_MODEL_PARALLEL_GROUP
_PIPELINE_MODEL_PARALLEL_GROUP = None
global _PIPELINE_GLOBAL_RANKS
_PIPELINE_GLOBAL_RANKS = None
# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
from typing import List, Sequence
import torch
def ensure_divisibility(numerator, denominator):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, "{} is not divisible by {}".format(
numerator, denominator)
def divide(numerator, denominator):
"""Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> List[torch.Tensor]:
""" Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# NOTE: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
class VocabUtility:
""" Split the vocabulary into `world_size` chunks and return the first
and last index of the vocabulary belonging to the `rank`
partition: Note that indices in [fist, last)
"""
@staticmethod
def vocab_range_from_per_partition_vocab_size(
per_partition_vocab_size: int, rank: int) -> Sequence[int]:
index_f = rank * per_partition_vocab_size
index_l = index_f + per_partition_vocab_size
return index_f, index_l
@staticmethod
def vocab_range_from_global_vocab_size(global_vocab_size: int, rank: int,
world_size: int) -> Sequence[int]:
per_partition_vocab_size = divide(global_vocab_size, world_size)
return VocabUtility.vocab_range_from_per_partition_vocab_size(
per_partition_vocab_size, rank)
from typing import Type
from vllm.model_executor.quantization_utils.awq import AWQConfig
from vllm.model_executor.quantization_utils.base import QuantizationConfig
_QUANTIZATION_REGISTRY = {
"awq": AWQConfig,
}
def get_quant_class(quantization: str) -> Type[QuantizationConfig]:
if quantization not in _QUANTIZATION_REGISTRY:
raise ValueError(f"Invalid quantization method: {quantization}")
return _QUANTIZATION_REGISTRY[quantization]
__all__ = [
"QuantizationConfig",
"get_quant_class",
]
from typing import Any, Dict, List
import torch
from vllm.model_executor.quantization_utils.base import QuantizationConfig
class AWQConfig(QuantizationConfig):
"""Config class for AWQ.
Reference: https://arxiv.org/abs/2306.00978
"""
def __init__(
self,
weight_bits: int,
group_size: int,
zero_point: bool,
) -> None:
self.weight_bits = weight_bits
self.group_size = group_size
self.zero_point = zero_point
if self.weight_bits != 4:
raise ValueError(
"Currently, only 4-bit weight quantization is supported for "
f"AWQ, but got {self.weight_bits} bits.")
self.pack_factor = 32 // self.weight_bits
def __repr__(self) -> str:
return (f"AWQConfig(weight_bits={self.weight_bits}, "
f"group_size={self.group_size}, "
f"zero_point={self.zero_point})")
@classmethod
def get_name(cls) -> str:
return "awq"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.half]
@classmethod
def get_min_capability(cls) -> int:
# The AWQ kernel only supports Turing or newer GPUs.
return 75
@classmethod
def get_config_filenames(cls) -> List[str]:
return [
"quant_config.json", # E.g., casperhansen/vicuna-7b-v1.5-awq
"quantize_config.json", # E.g., abhinavkulkarni/mosaicml-mpt-7b-instruct-w4-g128-awq # pylint: disable=line-too-long
]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "AWQConfig":
weight_bits = cls.get_from_keys(config, ["w_bit", "bits"])
group_size = cls.get_from_keys(config, ["q_group_size", "group_size"])
zero_point = cls.get_from_keys(config, ["zero_point"])
return cls(weight_bits, group_size, zero_point)
@classmethod
def get_packed_tensor_names(cls) -> List[str]:
return ["qweight", "qzeros"]
@classmethod
def get_transposed_tensor_names(cls) -> List[str]:
return ["qweight", "qzeros", "scales"]
@classmethod
def get_tp_tensor_names(cls) -> List[str]:
return ["qweight", "qzeros", "scales"]
from typing import Any, Dict, List
import torch
class QuantizationConfig:
@classmethod
def get_name(cls) -> str:
"""Name of the quantization method."""
raise NotImplementedError
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
"""List of supported activation dtypes."""
raise NotImplementedError
@classmethod
def get_min_capability(cls) -> int:
"""Minimum GPU capability to support the quantization method.
E.g., 70 for Volta, 75 for Turing, 80 for Ampere.
This requirement is due to the custom CUDA kernels used by the
quantization method.
"""
raise NotImplementedError
@classmethod
def get_config_filenames(cls) -> List[str]:
"""List of filenames to search for in the model directory."""
raise NotImplementedError
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "QuantizationConfig":
"""Create a config class from the model's quantization config."""
raise NotImplementedError
@staticmethod
def get_from_keys(config: Dict[str, Any], keys: List[str]) -> Any:
"""Get a value from the model's quantization config."""
for key in keys:
if key in config:
return config[key]
raise ValueError(f"Cannot find any of {keys} in the model's "
"quantization config.")
@classmethod
def get_packed_tensor_names(cls) -> List[str]:
raise NotImplementedError
@classmethod
def is_packed(cls, tensor_name: str) -> bool:
"""Returns True if a tensor is packed.
A tensor is considered packed if each element in the tensor is a
packed representation of multiple elements in the original tensor.
For example, an INT32 element in the tensor may represent 8 INT4
elements in the original tensor.
"""
return any(tag in tensor_name for tag in cls.get_packed_tensor_names())
@classmethod
def get_transposed_tensor_names(cls) -> List[str]:
raise NotImplementedError
@classmethod
def is_transposed(cls, tensor_name: str) -> bool:
"""Returns True if a tensor is transposed relative to nn.Linear.weight.
"""
return any(tag in tensor_name
for tag in cls.get_transposed_tensor_names())
@classmethod
def get_tp_tensor_names(cls) -> List[str]:
raise NotImplementedError
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment