Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
text-generation-inference
Commits
70056d1e
Commit
70056d1e
authored
May 29, 2024
by
huangwb
Browse files
add custom vllm source code
parent
12d93ad7
Changes
158
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3571 additions
and
0 deletions
+3571
-0
server/vllm/vllm/entrypoints/api_server.py
server/vllm/vllm/entrypoints/api_server.py
+80
-0
server/vllm/vllm/entrypoints/llm.py
server/vllm/vllm/entrypoints/llm.py
+189
-0
server/vllm/vllm/entrypoints/openai/__init__.py
server/vllm/vllm/entrypoints/openai/__init__.py
+0
-0
server/vllm/vllm/entrypoints/openai/api_server.py
server/vllm/vllm/entrypoints/openai/api_server.py
+626
-0
server/vllm/vllm/entrypoints/openai/protocol.py
server/vllm/vllm/entrypoints/openai/protocol.py
+178
-0
server/vllm/vllm/logger.py
server/vllm/vllm/logger.py
+51
-0
server/vllm/vllm/model_executor/__init__.py
server/vllm/vllm/model_executor/__init__.py
+9
-0
server/vllm/vllm/model_executor/input_metadata.py
server/vllm/vllm/model_executor/input_metadata.py
+85
-0
server/vllm/vllm/model_executor/layers/__init__.py
server/vllm/vllm/model_executor/layers/__init__.py
+0
-0
server/vllm/vllm/model_executor/layers/activation.py
server/vllm/vllm/model_executor/layers/activation.py
+56
-0
server/vllm/vllm/model_executor/layers/attention.py
server/vllm/vllm/model_executor/layers/attention.py
+466
-0
server/vllm/vllm/model_executor/layers/layernorm.py
server/vllm/vllm/model_executor/layers/layernorm.py
+32
-0
server/vllm/vllm/model_executor/layers/quantized_linear/__init__.py
...m/vllm/model_executor/layers/quantized_linear/__init__.py
+37
-0
server/vllm/vllm/model_executor/layers/quantized_linear/awq.py
...r/vllm/vllm/model_executor/layers/quantized_linear/awq.py
+102
-0
server/vllm/vllm/model_executor/layers/rotary_embedding.py
server/vllm/vllm/model_executor/layers/rotary_embedding.py
+169
-0
server/vllm/vllm/model_executor/layers/sampler.py
server/vllm/vllm/model_executor/layers/sampler.py
+591
-0
server/vllm/vllm/model_executor/model_loader.py
server/vllm/vllm/model_executor/model_loader.py
+106
-0
server/vllm/vllm/model_executor/models/__init__.py
server/vllm/vllm/model_executor/models/__init__.py
+33
-0
server/vllm/vllm/model_executor/models/aquila.py
server/vllm/vllm/model_executor/models/aquila.py
+372
-0
server/vllm/vllm/model_executor/models/baichuan.py
server/vllm/vllm/model_executor/models/baichuan.py
+389
-0
No files found.
server/vllm/vllm/entrypoints/api_server.py
0 → 100644
View file @
70056d1e
import
argparse
import
json
from
typing
import
AsyncGenerator
from
fastapi
import
FastAPI
,
Request
from
fastapi.responses
import
JSONResponse
,
Response
,
StreamingResponse
import
uvicorn
from
vllm.engine.arg_utils
import
AsyncEngineArgs
from
vllm.engine.async_llm_engine
import
AsyncLLMEngine
from
vllm.sampling_params
import
SamplingParams
from
vllm.utils
import
random_uuid
TIMEOUT_KEEP_ALIVE
=
5
# seconds.
TIMEOUT_TO_PREVENT_DEADLOCK
=
1
# seconds.
app
=
FastAPI
()
engine
=
None
@
app
.
post
(
"/generate"
)
async
def
generate
(
request
:
Request
)
->
Response
:
"""Generate completion for the request.
The request should be a JSON object with the following fields:
- prompt: the prompt to use for the generation.
- stream: whether to stream the results or not.
- other fields: the sampling parameters (See `SamplingParams` for details).
"""
request_dict
=
await
request
.
json
()
prompt
=
request_dict
.
pop
(
"prompt"
)
stream
=
request_dict
.
pop
(
"stream"
,
False
)
sampling_params
=
SamplingParams
(
**
request_dict
)
request_id
=
random_uuid
()
results_generator
=
engine
.
generate
(
prompt
,
sampling_params
,
request_id
)
# Streaming case
async
def
stream_results
()
->
AsyncGenerator
[
bytes
,
None
]:
async
for
request_output
in
results_generator
:
prompt
=
request_output
.
prompt
text_outputs
=
[
prompt
+
output
.
text
for
output
in
request_output
.
outputs
]
ret
=
{
"text"
:
text_outputs
}
yield
(
json
.
dumps
(
ret
)
+
"
\0
"
).
encode
(
"utf-8"
)
if
stream
:
return
StreamingResponse
(
stream_results
())
# Non-streaming case
final_output
=
None
async
for
request_output
in
results_generator
:
if
await
request
.
is_disconnected
():
# Abort the request if the client disconnects.
await
engine
.
abort
(
request_id
)
return
Response
(
status_code
=
499
)
final_output
=
request_output
assert
final_output
is
not
None
prompt
=
final_output
.
prompt
text_outputs
=
[
prompt
+
output
.
text
for
output
in
final_output
.
outputs
]
ret
=
{
"text"
:
text_outputs
}
return
JSONResponse
(
ret
)
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--host"
,
type
=
str
,
default
=
None
)
parser
.
add_argument
(
"--port"
,
type
=
int
,
default
=
8000
)
parser
=
AsyncEngineArgs
.
add_cli_args
(
parser
)
args
=
parser
.
parse_args
()
engine_args
=
AsyncEngineArgs
.
from_cli_args
(
args
)
engine
=
AsyncLLMEngine
.
from_engine_args
(
engine_args
)
uvicorn
.
run
(
app
,
host
=
args
.
host
,
port
=
args
.
port
,
log_level
=
"debug"
,
timeout_keep_alive
=
TIMEOUT_KEEP_ALIVE
)
server/vllm/vllm/entrypoints/llm.py
0 → 100644
View file @
70056d1e
from
typing
import
List
,
Optional
,
Union
from
tqdm
import
tqdm
from
transformers
import
PreTrainedTokenizer
,
PreTrainedTokenizerFast
from
vllm.engine.arg_utils
import
EngineArgs
from
vllm.engine.llm_engine
import
LLMEngine
from
vllm.outputs
import
RequestOutput
from
vllm.sampling_params
import
SamplingParams
from
vllm.utils
import
Counter
class
LLM
:
"""An LLM for generating texts from given prompts and sampling parameters.
This class includes a tokenizer, a language model (possibly distributed
across multiple GPUs), and GPU memory space allocated for intermediate
states (aka KV cache). Given a batch of prompts and sampling parameters,
this class generates texts from the model, using an intelligent batching
mechanism and efficient memory management.
NOTE: This class is intended to be used for offline inference. For online
serving, use the `AsyncLLMEngine` class instead.
NOTE: For the comprehensive list of arguments, see `EngineArgs`.
Args:
model: The name or path of a HuggingFace Transformers model.
tokenizer: The name or path of a HuggingFace Transformers tokenizer.
tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer
if available, and "slow" will always use the slow tokenizer.
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
downloading the model and tokenizer.
tensor_parallel_size: The number of GPUs to use for distributed
execution with tensor parallelism.
dtype: The data type for the model weights and activations. Currently,
we support `float32`, `float16`, and `bfloat16`. If `auto`, we use
the `torch_dtype` attribute specified in the model config file.
However, if the `torch_dtype` in the config is `float32`, we will
use `float16` instead.
quantization: The method used to quantize the model weights. Currently,
we support "awq". If None, we assume the model weights are not
quantized and use `dtype` to determine the data type of the weights.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id.
tokenizer_revision: The specific tokenizer version to use. It can be a
branch name, a tag name, or a commit id.
seed: The seed to initialize the random number generator for sampling.
gpu_memory_utilization: The ratio (between 0 and 1) of GPU memory to
reserve for the model weights, activations, and KV cache. Higher
values will increase the KV cache size and thus improve the model's
throughput. However, if the value is too high, it may cause out-of-
memory (OOM) errors.
swap_space: The size (GiB) of CPU memory per GPU to use as swap space.
This can be used for temporarily storing the states of the requests
when their `best_of` sampling parameters are larger than 1. If all
requests will have `best_of=1`, you can safely set this to 0.
Otherwise, too small values may cause out-of-memory (OOM) errors.
"""
def
__init__
(
self
,
model
:
str
,
tokenizer
:
Optional
[
str
]
=
None
,
tokenizer_mode
:
str
=
"auto"
,
trust_remote_code
:
bool
=
False
,
tensor_parallel_size
:
int
=
1
,
dtype
:
str
=
"auto"
,
quantization
:
Optional
[
str
]
=
None
,
revision
:
Optional
[
str
]
=
None
,
tokenizer_revision
:
Optional
[
str
]
=
None
,
seed
:
int
=
0
,
gpu_memory_utilization
:
float
=
0.9
,
swap_space
:
int
=
4
,
**
kwargs
,
)
->
None
:
if
"disable_log_stats"
not
in
kwargs
:
kwargs
[
"disable_log_stats"
]
=
True
engine_args
=
EngineArgs
(
model
=
model
,
tokenizer
=
tokenizer
,
tokenizer_mode
=
tokenizer_mode
,
trust_remote_code
=
trust_remote_code
,
tensor_parallel_size
=
tensor_parallel_size
,
dtype
=
dtype
,
quantization
=
quantization
,
revision
=
revision
,
tokenizer_revision
=
tokenizer_revision
,
seed
=
seed
,
gpu_memory_utilization
=
gpu_memory_utilization
,
swap_space
=
swap_space
,
**
kwargs
,
)
self
.
llm_engine
=
LLMEngine
.
from_engine_args
(
engine_args
)
self
.
request_counter
=
Counter
()
def
get_tokenizer
(
self
)
->
Union
[
PreTrainedTokenizer
,
PreTrainedTokenizerFast
]:
return
self
.
llm_engine
.
tokenizer
def
set_tokenizer
(
self
,
tokenizer
:
Union
[
PreTrainedTokenizer
,
PreTrainedTokenizerFast
],
)
->
None
:
self
.
llm_engine
.
tokenizer
=
tokenizer
def
generate
(
self
,
prompts
:
Optional
[
Union
[
str
,
List
[
str
]]]
=
None
,
sampling_params
:
Optional
[
SamplingParams
]
=
None
,
prompt_token_ids
:
Optional
[
List
[
List
[
int
]]]
=
None
,
use_tqdm
:
bool
=
True
,
)
->
List
[
RequestOutput
]:
"""Generates the completions for the input prompts.
NOTE: This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Args:
prompts: A list of prompts to generate completions for.
sampling_params: The sampling parameters for text generation. If
None, we use the default sampling parameters.
prompt_token_ids: A list of token IDs for the prompts. If None, we
use the tokenizer to convert the prompts to token IDs.
use_tqdm: Whether to use tqdm to display the progress bar.
Returns:
A list of `RequestOutput` objects containing the generated
completions in the same order as the input prompts.
"""
if
prompts
is
None
and
prompt_token_ids
is
None
:
raise
ValueError
(
"Either prompts or prompt_token_ids must be "
"provided."
)
if
isinstance
(
prompts
,
str
):
# Convert a single prompt to a list.
prompts
=
[
prompts
]
if
prompts
is
not
None
and
prompt_token_ids
is
not
None
:
if
len
(
prompts
)
!=
len
(
prompt_token_ids
):
raise
ValueError
(
"The lengths of prompts and prompt_token_ids "
"must be the same."
)
if
sampling_params
is
None
:
# Use default sampling params.
sampling_params
=
SamplingParams
()
# Add requests to the engine.
if
prompts
is
not
None
:
num_requests
=
len
(
prompts
)
else
:
num_requests
=
len
(
prompt_token_ids
)
for
i
in
range
(
num_requests
):
prompt
=
prompts
[
i
]
if
prompts
is
not
None
else
None
if
prompt_token_ids
is
None
:
token_ids
=
None
else
:
token_ids
=
prompt_token_ids
[
i
]
self
.
_add_request
(
prompt
,
sampling_params
,
token_ids
)
return
self
.
_run_engine
(
use_tqdm
)
def
_add_request
(
self
,
prompt
:
Optional
[
str
],
sampling_params
:
SamplingParams
,
prompt_token_ids
:
Optional
[
List
[
int
]],
)
->
None
:
request_id
=
str
(
next
(
self
.
request_counter
))
self
.
llm_engine
.
add_request
(
request_id
,
prompt
,
sampling_params
,
prompt_token_ids
)
def
_run_engine
(
self
,
use_tqdm
:
bool
)
->
List
[
RequestOutput
]:
# Initialize tqdm.
if
use_tqdm
:
num_requests
=
self
.
llm_engine
.
get_num_unfinished_requests
()
pbar
=
tqdm
(
total
=
num_requests
,
desc
=
"Processed prompts"
)
# Run the engine.
outputs
:
List
[
RequestOutput
]
=
[]
while
self
.
llm_engine
.
has_unfinished_requests
():
step_outputs
=
self
.
llm_engine
.
step
()
for
output
in
step_outputs
:
if
output
.
finished
:
outputs
.
append
(
output
)
if
use_tqdm
:
pbar
.
update
(
1
)
if
use_tqdm
:
pbar
.
close
()
# Sort the outputs by request ID.
# This is necessary because some requests may be finished earlier than
# its previous requests.
outputs
=
sorted
(
outputs
,
key
=
lambda
x
:
int
(
x
.
request_id
))
return
outputs
server/vllm/vllm/entrypoints/openai/__init__.py
0 → 100644
View file @
70056d1e
server/vllm/vllm/entrypoints/openai/api_server.py
0 → 100644
View file @
70056d1e
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/serve/openai_api_server.py
import
argparse
import
asyncio
import
json
import
time
from
http
import
HTTPStatus
from
typing
import
AsyncGenerator
,
Dict
,
List
,
Optional
,
Tuple
,
Union
import
fastapi
import
uvicorn
from
fastapi
import
Request
from
fastapi.exceptions
import
RequestValidationError
from
fastapi.middleware.cors
import
CORSMiddleware
from
fastapi.responses
import
JSONResponse
,
StreamingResponse
from
packaging
import
version
from
vllm.engine.arg_utils
import
AsyncEngineArgs
from
vllm.engine.async_llm_engine
import
AsyncLLMEngine
from
vllm.entrypoints.openai.protocol
import
(
CompletionRequest
,
CompletionResponse
,
CompletionResponseChoice
,
CompletionResponseStreamChoice
,
CompletionStreamResponse
,
ChatCompletionRequest
,
ChatCompletionResponse
,
ChatCompletionResponseChoice
,
ChatCompletionResponseStreamChoice
,
ChatCompletionStreamResponse
,
ChatMessage
,
DeltaMessage
,
ErrorResponse
,
LogProbs
,
ModelCard
,
ModelList
,
ModelPermission
,
UsageInfo
)
from
vllm.logger
import
init_logger
from
vllm.outputs
import
RequestOutput
from
vllm.sampling_params
import
SamplingParams
from
vllm.transformers_utils.tokenizer
import
get_tokenizer
from
vllm.utils
import
random_uuid
try
:
import
fastchat
from
fastchat.conversation
import
Conversation
,
SeparatorStyle
from
fastchat.model.model_adapter
import
get_conversation_template
_fastchat_available
=
True
except
ImportError
:
_fastchat_available
=
False
TIMEOUT_KEEP_ALIVE
=
5
# seconds
logger
=
init_logger
(
__name__
)
served_model
=
None
app
=
fastapi
.
FastAPI
()
engine
=
None
def
create_error_response
(
status_code
:
HTTPStatus
,
message
:
str
)
->
JSONResponse
:
return
JSONResponse
(
ErrorResponse
(
message
=
message
,
type
=
"invalid_request_error"
).
dict
(),
status_code
=
status_code
.
value
)
@
app
.
exception_handler
(
RequestValidationError
)
async
def
validation_exception_handler
(
request
,
exc
):
# pylint: disable=unused-argument
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
str
(
exc
))
async
def
check_model
(
request
)
->
Optional
[
JSONResponse
]:
if
request
.
model
==
served_model
:
return
ret
=
create_error_response
(
HTTPStatus
.
NOT_FOUND
,
f
"The model `
{
request
.
model
}
` does not exist."
,
)
return
ret
async
def
get_gen_prompt
(
request
)
->
str
:
if
not
_fastchat_available
:
raise
ModuleNotFoundError
(
"fastchat is not installed. Please install fastchat to use "
"the chat completion and conversation APIs: `$ pip install fschat`"
)
if
version
.
parse
(
fastchat
.
__version__
)
<
version
.
parse
(
"0.2.23"
):
raise
ImportError
(
f
"fastchat version is low. Current version:
{
fastchat
.
__version__
}
"
"Please upgrade fastchat to use: `$ pip install -U fschat`"
)
conv
=
get_conversation_template
(
request
.
model
)
conv
=
Conversation
(
name
=
conv
.
name
,
system_template
=
conv
.
system_template
,
system_message
=
conv
.
system_message
,
roles
=
conv
.
roles
,
messages
=
list
(
conv
.
messages
),
# prevent in-place modification
offset
=
conv
.
offset
,
sep_style
=
SeparatorStyle
(
conv
.
sep_style
),
sep
=
conv
.
sep
,
sep2
=
conv
.
sep2
,
stop_str
=
conv
.
stop_str
,
stop_token_ids
=
conv
.
stop_token_ids
,
)
if
isinstance
(
request
.
messages
,
str
):
prompt
=
request
.
messages
else
:
for
message
in
request
.
messages
:
msg_role
=
message
[
"role"
]
if
msg_role
==
"system"
:
conv
.
system_message
=
message
[
"content"
]
elif
msg_role
==
"user"
:
conv
.
append_message
(
conv
.
roles
[
0
],
message
[
"content"
])
elif
msg_role
==
"assistant"
:
conv
.
append_message
(
conv
.
roles
[
1
],
message
[
"content"
])
else
:
raise
ValueError
(
f
"Unknown role:
{
msg_role
}
"
)
# Add a blank message for the assistant.
conv
.
append_message
(
conv
.
roles
[
1
],
None
)
prompt
=
conv
.
get_prompt
()
return
prompt
async
def
check_length
(
request
:
Union
[
ChatCompletionRequest
,
CompletionRequest
],
prompt
:
Optional
[
str
]
=
None
,
prompt_ids
:
Optional
[
List
[
int
]]
=
None
)
->
Tuple
[
List
[
int
],
Optional
[
JSONResponse
]]:
assert
(
not
(
prompt
is
None
and
prompt_ids
is
None
)
and
not
(
prompt
is
not
None
and
prompt_ids
is
not
None
)
),
"Either prompt or prompt_ids should be provided."
if
prompt_ids
is
not
None
:
input_ids
=
prompt_ids
else
:
input_ids
=
tokenizer
(
prompt
).
input_ids
token_num
=
len
(
input_ids
)
if
request
.
max_tokens
is
None
:
request
.
max_tokens
=
max_model_len
-
token_num
if
token_num
+
request
.
max_tokens
>
max_model_len
:
return
input_ids
,
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
f
"This model's maximum context length is
{
max_model_len
}
tokens. "
f
"However, you requested
{
request
.
max_tokens
+
token_num
}
tokens "
f
"(
{
token_num
}
in the messages, "
f
"
{
request
.
max_tokens
}
in the completion). "
f
"Please reduce the length of the messages or completion."
,
)
else
:
return
input_ids
,
None
@
app
.
get
(
"/v1/models"
)
async
def
show_available_models
():
"""Show available models. Right now we only have one model."""
model_cards
=
[
ModelCard
(
id
=
served_model
,
root
=
served_model
,
permission
=
[
ModelPermission
()])
]
return
ModelList
(
data
=
model_cards
)
def
create_logprobs
(
token_ids
:
List
[
int
],
id_logprobs
:
List
[
Dict
[
int
,
float
]],
initial_text_offset
:
int
=
0
)
->
LogProbs
:
"""Create OpenAI-style logprobs."""
logprobs
=
LogProbs
()
last_token_len
=
0
for
token_id
,
id_logprob
in
zip
(
token_ids
,
id_logprobs
):
token
=
tokenizer
.
convert_ids_to_tokens
(
token_id
)
logprobs
.
tokens
.
append
(
token
)
logprobs
.
token_logprobs
.
append
(
id_logprob
[
token_id
])
if
len
(
logprobs
.
text_offset
)
==
0
:
logprobs
.
text_offset
.
append
(
initial_text_offset
)
else
:
logprobs
.
text_offset
.
append
(
logprobs
.
text_offset
[
-
1
]
+
last_token_len
)
last_token_len
=
len
(
token
)
logprobs
.
top_logprobs
.
append
({
tokenizer
.
convert_ids_to_tokens
(
i
):
p
for
i
,
p
in
id_logprob
.
items
()
})
return
logprobs
@
app
.
post
(
"/v1/chat/completions"
)
async
def
create_chat_completion
(
request
:
ChatCompletionRequest
,
raw_request
:
Request
):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI ChatCompletion API.
NOTE: Currently we do not support the following features:
- function_call (Users should implement this by themselves)
- logit_bias (to be supported by vLLM engine)
"""
logger
.
info
(
f
"Received chat completion request:
{
request
}
"
)
error_check_ret
=
await
check_model
(
request
)
if
error_check_ret
is
not
None
:
return
error_check_ret
if
request
.
logit_bias
is
not
None
and
len
(
request
.
logit_bias
)
>
0
:
# TODO: support logit_bias in vLLM engine.
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"logit_bias is not currently supported"
)
prompt
=
await
get_gen_prompt
(
request
)
token_ids
,
error_check_ret
=
await
check_length
(
request
,
prompt
=
prompt
)
if
error_check_ret
is
not
None
:
return
error_check_ret
model_name
=
request
.
model
request_id
=
f
"cmpl-
{
random_uuid
()
}
"
created_time
=
int
(
time
.
monotonic
())
try
:
sampling_params
=
SamplingParams
(
n
=
request
.
n
,
presence_penalty
=
request
.
presence_penalty
,
frequency_penalty
=
request
.
frequency_penalty
,
temperature
=
request
.
temperature
,
top_p
=
request
.
top_p
,
stop
=
request
.
stop
,
stop_token_ids
=
request
.
stop_token_ids
,
max_tokens
=
request
.
max_tokens
,
best_of
=
request
.
best_of
,
top_k
=
request
.
top_k
,
ignore_eos
=
request
.
ignore_eos
,
use_beam_search
=
request
.
use_beam_search
,
skip_special_tokens
=
request
.
skip_special_tokens
,
)
except
ValueError
as
e
:
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
str
(
e
))
result_generator
=
engine
.
generate
(
prompt
,
sampling_params
,
request_id
,
token_ids
)
def
create_stream_response_json
(
index
:
int
,
text
:
str
,
finish_reason
:
Optional
[
str
]
=
None
,
)
->
str
:
choice_data
=
ChatCompletionResponseStreamChoice
(
index
=
index
,
delta
=
DeltaMessage
(
content
=
text
),
finish_reason
=
finish_reason
,
)
response
=
ChatCompletionStreamResponse
(
id
=
request_id
,
created
=
created_time
,
model
=
model_name
,
choices
=
[
choice_data
],
)
response_json
=
response
.
json
(
ensure_ascii
=
False
)
return
response_json
async
def
completion_stream_generator
()
->
AsyncGenerator
[
str
,
None
]:
# First chunk with role
for
i
in
range
(
request
.
n
):
choice_data
=
ChatCompletionResponseStreamChoice
(
index
=
i
,
delta
=
DeltaMessage
(
role
=
"assistant"
),
finish_reason
=
None
,
)
chunk
=
ChatCompletionStreamResponse
(
id
=
request_id
,
choices
=
[
choice_data
],
model
=
model_name
)
data
=
chunk
.
json
(
exclude_unset
=
True
,
ensure_ascii
=
False
)
yield
f
"data:
{
data
}
\n\n
"
previous_texts
=
[
""
]
*
request
.
n
previous_num_tokens
=
[
0
]
*
request
.
n
async
for
res
in
result_generator
:
res
:
RequestOutput
for
output
in
res
.
outputs
:
i
=
output
.
index
delta_text
=
output
.
text
[
len
(
previous_texts
[
i
]):]
previous_texts
[
i
]
=
output
.
text
previous_num_tokens
[
i
]
=
len
(
output
.
token_ids
)
response_json
=
create_stream_response_json
(
index
=
i
,
text
=
delta_text
,
)
yield
f
"data:
{
response_json
}
\n\n
"
if
output
.
finish_reason
is
not
None
:
response_json
=
create_stream_response_json
(
index
=
i
,
text
=
""
,
finish_reason
=
output
.
finish_reason
,
)
yield
f
"data:
{
response_json
}
\n\n
"
yield
"data: [DONE]
\n\n
"
# Streaming response
if
request
.
stream
:
return
StreamingResponse
(
completion_stream_generator
(),
media_type
=
"text/event-stream"
)
# Non-streaming response
final_res
:
RequestOutput
=
None
async
for
res
in
result_generator
:
if
await
raw_request
.
is_disconnected
():
# Abort the request if the client disconnects.
await
engine
.
abort
(
request_id
)
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"Client disconnected"
)
final_res
=
res
assert
final_res
is
not
None
choices
=
[]
for
output
in
final_res
.
outputs
:
choice_data
=
ChatCompletionResponseChoice
(
index
=
output
.
index
,
message
=
ChatMessage
(
role
=
"assistant"
,
content
=
output
.
text
),
finish_reason
=
output
.
finish_reason
,
)
choices
.
append
(
choice_data
)
num_prompt_tokens
=
len
(
final_res
.
prompt_token_ids
)
num_generated_tokens
=
sum
(
len
(
output
.
token_ids
)
for
output
in
final_res
.
outputs
)
usage
=
UsageInfo
(
prompt_tokens
=
num_prompt_tokens
,
completion_tokens
=
num_generated_tokens
,
total_tokens
=
num_prompt_tokens
+
num_generated_tokens
,
)
response
=
ChatCompletionResponse
(
id
=
request_id
,
created
=
created_time
,
model
=
model_name
,
choices
=
choices
,
usage
=
usage
,
)
if
request
.
stream
:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json
=
response
.
json
(
ensure_ascii
=
False
)
async
def
fake_stream_generator
()
->
AsyncGenerator
[
str
,
None
]:
yield
f
"data:
{
response_json
}
\n\n
"
yield
"data: [DONE]
\n\n
"
return
StreamingResponse
(
fake_stream_generator
(),
media_type
=
"text/event-stream"
)
return
response
@
app
.
post
(
"/v1/completions"
)
async
def
create_completion
(
request
:
CompletionRequest
,
raw_request
:
Request
):
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/completions/create
for the API specification. This API mimics the OpenAI Completion API.
NOTE: Currently we do not support the following features:
- echo (since the vLLM engine does not currently support
getting the logprobs of prompt tokens)
- suffix (the language models we currently support do not support
suffix)
- logit_bias (to be supported by vLLM engine)
"""
logger
.
info
(
f
"Received completion request:
{
request
}
"
)
error_check_ret
=
await
check_model
(
request
)
if
error_check_ret
is
not
None
:
return
error_check_ret
if
request
.
echo
:
# We do not support echo since the vLLM engine does not
# currently support getting the logprobs of prompt tokens.
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"echo is not currently supported"
)
if
request
.
suffix
is
not
None
:
# The language models we currently support do not support suffix.
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"suffix is not currently supported"
)
if
request
.
logit_bias
is
not
None
and
len
(
request
.
logit_bias
)
>
0
:
# TODO: support logit_bias in vLLM engine.
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"logit_bias is not currently supported"
)
model_name
=
request
.
model
request_id
=
f
"cmpl-
{
random_uuid
()
}
"
use_token_ids
=
False
if
isinstance
(
request
.
prompt
,
list
):
if
len
(
request
.
prompt
)
==
0
:
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"please provide at least one prompt"
)
first_element
=
request
.
prompt
[
0
]
if
isinstance
(
first_element
,
int
):
use_token_ids
=
True
prompt
=
request
.
prompt
elif
isinstance
(
first_element
,
(
str
,
list
)):
# TODO: handles multiple prompt case in list[list[int]]
if
len
(
request
.
prompt
)
>
1
:
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"multiple prompts in a batch is not currently supported"
)
use_token_ids
=
not
isinstance
(
first_element
,
str
)
prompt
=
request
.
prompt
[
0
]
else
:
prompt
=
request
.
prompt
if
use_token_ids
:
_
,
error_check_ret
=
await
check_length
(
request
,
prompt_ids
=
prompt
)
else
:
token_ids
,
error_check_ret
=
await
check_length
(
request
,
prompt
=
prompt
)
if
error_check_ret
is
not
None
:
return
error_check_ret
created_time
=
int
(
time
.
monotonic
())
try
:
sampling_params
=
SamplingParams
(
n
=
request
.
n
,
best_of
=
request
.
best_of
,
presence_penalty
=
request
.
presence_penalty
,
frequency_penalty
=
request
.
frequency_penalty
,
temperature
=
request
.
temperature
,
top_p
=
request
.
top_p
,
top_k
=
request
.
top_k
,
stop
=
request
.
stop
,
stop_token_ids
=
request
.
stop_token_ids
,
ignore_eos
=
request
.
ignore_eos
,
max_tokens
=
request
.
max_tokens
,
logprobs
=
request
.
logprobs
,
use_beam_search
=
request
.
use_beam_search
,
skip_special_tokens
=
request
.
skip_special_tokens
,
)
except
ValueError
as
e
:
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
str
(
e
))
if
use_token_ids
:
result_generator
=
engine
.
generate
(
None
,
sampling_params
,
request_id
,
prompt_token_ids
=
prompt
)
else
:
result_generator
=
engine
.
generate
(
prompt
,
sampling_params
,
request_id
,
token_ids
)
# Similar to the OpenAI API, when n != best_of, we do not stream the
# results. In addition, we do not stream the results when use beam search.
stream
=
(
request
.
stream
and
(
request
.
best_of
is
None
or
request
.
n
==
request
.
best_of
)
and
not
request
.
use_beam_search
)
def
create_stream_response_json
(
index
:
int
,
text
:
str
,
logprobs
:
Optional
[
LogProbs
]
=
None
,
finish_reason
:
Optional
[
str
]
=
None
,
)
->
str
:
choice_data
=
CompletionResponseStreamChoice
(
index
=
index
,
text
=
text
,
logprobs
=
logprobs
,
finish_reason
=
finish_reason
,
)
response
=
CompletionStreamResponse
(
id
=
request_id
,
created
=
created_time
,
model
=
model_name
,
choices
=
[
choice_data
],
)
response_json
=
response
.
json
(
ensure_ascii
=
False
)
return
response_json
async
def
completion_stream_generator
()
->
AsyncGenerator
[
str
,
None
]:
previous_texts
=
[
""
]
*
request
.
n
previous_num_tokens
=
[
0
]
*
request
.
n
async
for
res
in
result_generator
:
res
:
RequestOutput
for
output
in
res
.
outputs
:
i
=
output
.
index
delta_text
=
output
.
text
[
len
(
previous_texts
[
i
]):]
if
request
.
logprobs
is
not
None
:
logprobs
=
create_logprobs
(
output
.
token_ids
[
previous_num_tokens
[
i
]:],
output
.
logprobs
[
previous_num_tokens
[
i
]:],
len
(
previous_texts
[
i
]))
else
:
logprobs
=
None
previous_texts
[
i
]
=
output
.
text
previous_num_tokens
[
i
]
=
len
(
output
.
token_ids
)
response_json
=
create_stream_response_json
(
index
=
i
,
text
=
delta_text
,
logprobs
=
logprobs
,
)
yield
f
"data:
{
response_json
}
\n\n
"
if
output
.
finish_reason
is
not
None
:
logprobs
=
(
LogProbs
()
if
request
.
logprobs
is
not
None
else
None
)
response_json
=
create_stream_response_json
(
index
=
i
,
text
=
""
,
logprobs
=
logprobs
,
finish_reason
=
output
.
finish_reason
,
)
yield
f
"data:
{
response_json
}
\n\n
"
yield
"data: [DONE]
\n\n
"
# Streaming response
if
stream
:
return
StreamingResponse
(
completion_stream_generator
(),
media_type
=
"text/event-stream"
)
# Non-streaming response
final_res
:
RequestOutput
=
None
async
for
res
in
result_generator
:
if
await
raw_request
.
is_disconnected
():
# Abort the request if the client disconnects.
await
engine
.
abort
(
request_id
)
return
create_error_response
(
HTTPStatus
.
BAD_REQUEST
,
"Client disconnected"
)
final_res
=
res
assert
final_res
is
not
None
choices
=
[]
for
output
in
final_res
.
outputs
:
if
request
.
logprobs
is
not
None
:
logprobs
=
create_logprobs
(
output
.
token_ids
,
output
.
logprobs
)
else
:
logprobs
=
None
choice_data
=
CompletionResponseChoice
(
index
=
output
.
index
,
text
=
output
.
text
,
logprobs
=
logprobs
,
finish_reason
=
output
.
finish_reason
,
)
choices
.
append
(
choice_data
)
num_prompt_tokens
=
len
(
final_res
.
prompt_token_ids
)
num_generated_tokens
=
sum
(
len
(
output
.
token_ids
)
for
output
in
final_res
.
outputs
)
usage
=
UsageInfo
(
prompt_tokens
=
num_prompt_tokens
,
completion_tokens
=
num_generated_tokens
,
total_tokens
=
num_prompt_tokens
+
num_generated_tokens
,
)
response
=
CompletionResponse
(
id
=
request_id
,
created
=
created_time
,
model
=
model_name
,
choices
=
choices
,
usage
=
usage
,
)
if
request
.
stream
:
# When user requests streaming but we don't stream, we still need to
# return a streaming response with a single event.
response_json
=
response
.
json
(
ensure_ascii
=
False
)
async
def
fake_stream_generator
()
->
AsyncGenerator
[
str
,
None
]:
yield
f
"data:
{
response_json
}
\n\n
"
yield
"data: [DONE]
\n\n
"
return
StreamingResponse
(
fake_stream_generator
(),
media_type
=
"text/event-stream"
)
return
response
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
description
=
"vLLM OpenAI-Compatible RESTful API server."
)
parser
.
add_argument
(
"--host"
,
type
=
str
,
default
=
None
,
help
=
"host name"
)
parser
.
add_argument
(
"--port"
,
type
=
int
,
default
=
8000
,
help
=
"port number"
)
parser
.
add_argument
(
"--allow-credentials"
,
action
=
"store_true"
,
help
=
"allow credentials"
)
parser
.
add_argument
(
"--allowed-origins"
,
type
=
json
.
loads
,
default
=
[
"*"
],
help
=
"allowed origins"
)
parser
.
add_argument
(
"--allowed-methods"
,
type
=
json
.
loads
,
default
=
[
"*"
],
help
=
"allowed methods"
)
parser
.
add_argument
(
"--allowed-headers"
,
type
=
json
.
loads
,
default
=
[
"*"
],
help
=
"allowed headers"
)
parser
.
add_argument
(
"--served-model-name"
,
type
=
str
,
default
=
None
,
help
=
"The model name used in the API. If not "
"specified, the model name will be the same as "
"the huggingface name."
)
parser
=
AsyncEngineArgs
.
add_cli_args
(
parser
)
args
=
parser
.
parse_args
()
app
.
add_middleware
(
CORSMiddleware
,
allow_origins
=
args
.
allowed_origins
,
allow_credentials
=
args
.
allow_credentials
,
allow_methods
=
args
.
allowed_methods
,
allow_headers
=
args
.
allowed_headers
,
)
logger
.
info
(
f
"args:
{
args
}
"
)
if
args
.
served_model_name
is
not
None
:
served_model
=
args
.
served_model_name
else
:
served_model
=
args
.
model
engine_args
=
AsyncEngineArgs
.
from_cli_args
(
args
)
engine
=
AsyncLLMEngine
.
from_engine_args
(
engine_args
)
engine_model_config
=
asyncio
.
run
(
engine
.
get_model_config
())
max_model_len
=
engine_model_config
.
max_model_len
# A separate tokenizer to map token IDs to strings.
tokenizer
=
get_tokenizer
(
engine_args
.
tokenizer
,
tokenizer_mode
=
engine_args
.
tokenizer_mode
,
trust_remote_code
=
engine_args
.
trust_remote_code
)
uvicorn
.
run
(
app
,
host
=
args
.
host
,
port
=
args
.
port
,
log_level
=
"info"
,
timeout_keep_alive
=
TIMEOUT_KEEP_ALIVE
)
server/vllm/vllm/entrypoints/openai/protocol.py
0 → 100644
View file @
70056d1e
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
import
time
from
typing
import
Dict
,
List
,
Literal
,
Optional
,
Union
from
pydantic
import
BaseModel
,
Field
from
vllm.utils
import
random_uuid
class
ErrorResponse
(
BaseModel
):
object
:
str
=
"error"
message
:
str
type
:
str
param
:
Optional
[
str
]
=
None
code
:
Optional
[
str
]
=
None
class
ModelPermission
(
BaseModel
):
id
:
str
=
Field
(
default_factory
=
lambda
:
f
"modelperm-
{
random_uuid
()
}
"
)
object
:
str
=
"model_permission"
created
:
int
=
Field
(
default_factory
=
lambda
:
int
(
time
.
time
()))
allow_create_engine
:
bool
=
False
allow_sampling
:
bool
=
True
allow_logprobs
:
bool
=
True
allow_search_indices
:
bool
=
False
allow_view
:
bool
=
True
allow_fine_tuning
:
bool
=
False
organization
:
str
=
"*"
group
:
Optional
[
str
]
=
None
is_blocking
:
str
=
False
class
ModelCard
(
BaseModel
):
id
:
str
object
:
str
=
"model"
created
:
int
=
Field
(
default_factory
=
lambda
:
int
(
time
.
time
()))
owned_by
:
str
=
"vllm"
root
:
Optional
[
str
]
=
None
parent
:
Optional
[
str
]
=
None
permission
:
List
[
ModelPermission
]
=
Field
(
default_factory
=
list
)
class
ModelList
(
BaseModel
):
object
:
str
=
"list"
data
:
List
[
ModelCard
]
=
Field
(
default_factory
=
list
)
class
UsageInfo
(
BaseModel
):
prompt_tokens
:
int
=
0
total_tokens
:
int
=
0
completion_tokens
:
Optional
[
int
]
=
0
class
ChatCompletionRequest
(
BaseModel
):
model
:
str
messages
:
Union
[
str
,
List
[
Dict
[
str
,
str
]]]
temperature
:
Optional
[
float
]
=
0.7
top_p
:
Optional
[
float
]
=
1.0
n
:
Optional
[
int
]
=
1
max_tokens
:
Optional
[
int
]
=
None
stop
:
Optional
[
Union
[
str
,
List
[
str
]]]
=
Field
(
default_factory
=
list
)
stream
:
Optional
[
bool
]
=
False
presence_penalty
:
Optional
[
float
]
=
0.0
frequency_penalty
:
Optional
[
float
]
=
0.0
logit_bias
:
Optional
[
Dict
[
str
,
float
]]
=
None
user
:
Optional
[
str
]
=
None
# Additional parameters supported by vLLM
best_of
:
Optional
[
int
]
=
None
top_k
:
Optional
[
int
]
=
-
1
ignore_eos
:
Optional
[
bool
]
=
False
use_beam_search
:
Optional
[
bool
]
=
False
stop_token_ids
:
Optional
[
List
[
int
]]
=
Field
(
default_factory
=
list
)
skip_special_tokens
:
Optional
[
bool
]
=
True
class
CompletionRequest
(
BaseModel
):
model
:
str
# a string, array of strings, array of tokens, or array of token arrays
prompt
:
Union
[
List
[
int
],
List
[
List
[
int
]],
str
,
List
[
str
]]
suffix
:
Optional
[
str
]
=
None
max_tokens
:
Optional
[
int
]
=
16
temperature
:
Optional
[
float
]
=
1.0
top_p
:
Optional
[
float
]
=
1.0
n
:
Optional
[
int
]
=
1
stream
:
Optional
[
bool
]
=
False
logprobs
:
Optional
[
int
]
=
None
echo
:
Optional
[
bool
]
=
False
stop
:
Optional
[
Union
[
str
,
List
[
str
]]]
=
Field
(
default_factory
=
list
)
presence_penalty
:
Optional
[
float
]
=
0.0
frequency_penalty
:
Optional
[
float
]
=
0.0
best_of
:
Optional
[
int
]
=
None
logit_bias
:
Optional
[
Dict
[
str
,
float
]]
=
None
user
:
Optional
[
str
]
=
None
# Additional parameters supported by vLLM
top_k
:
Optional
[
int
]
=
-
1
ignore_eos
:
Optional
[
bool
]
=
False
use_beam_search
:
Optional
[
bool
]
=
False
stop_token_ids
:
Optional
[
List
[
int
]]
=
Field
(
default_factory
=
list
)
skip_special_tokens
:
Optional
[
bool
]
=
True
class
LogProbs
(
BaseModel
):
text_offset
:
List
[
int
]
=
Field
(
default_factory
=
list
)
token_logprobs
:
List
[
Optional
[
float
]]
=
Field
(
default_factory
=
list
)
tokens
:
List
[
str
]
=
Field
(
default_factory
=
list
)
top_logprobs
:
List
[
Optional
[
Dict
[
str
,
float
]]]
=
Field
(
default_factory
=
list
)
class
CompletionResponseChoice
(
BaseModel
):
index
:
int
text
:
str
logprobs
:
Optional
[
LogProbs
]
=
None
finish_reason
:
Optional
[
Literal
[
"stop"
,
"length"
]]
=
None
class
CompletionResponse
(
BaseModel
):
id
:
str
=
Field
(
default_factory
=
lambda
:
f
"cmpl-
{
random_uuid
()
}
"
)
object
:
str
=
"text_completion"
created
:
int
=
Field
(
default_factory
=
lambda
:
int
(
time
.
time
()))
model
:
str
choices
:
List
[
CompletionResponseChoice
]
usage
:
UsageInfo
class
CompletionResponseStreamChoice
(
BaseModel
):
index
:
int
text
:
str
logprobs
:
Optional
[
LogProbs
]
=
None
finish_reason
:
Optional
[
Literal
[
"stop"
,
"length"
]]
=
None
class
CompletionStreamResponse
(
BaseModel
):
id
:
str
=
Field
(
default_factory
=
lambda
:
f
"cmpl-
{
random_uuid
()
}
"
)
object
:
str
=
"text_completion"
created
:
int
=
Field
(
default_factory
=
lambda
:
int
(
time
.
time
()))
model
:
str
choices
:
List
[
CompletionResponseStreamChoice
]
class
ChatMessage
(
BaseModel
):
role
:
str
content
:
str
class
ChatCompletionResponseChoice
(
BaseModel
):
index
:
int
message
:
ChatMessage
finish_reason
:
Optional
[
Literal
[
"stop"
,
"length"
]]
=
None
class
ChatCompletionResponse
(
BaseModel
):
id
:
str
=
Field
(
default_factory
=
lambda
:
f
"chatcmpl-
{
random_uuid
()
}
"
)
object
:
str
=
"chat.completion"
created
:
int
=
Field
(
default_factory
=
lambda
:
int
(
time
.
time
()))
model
:
str
choices
:
List
[
ChatCompletionResponseChoice
]
usage
:
UsageInfo
class
DeltaMessage
(
BaseModel
):
role
:
Optional
[
str
]
=
None
content
:
Optional
[
str
]
=
None
class
ChatCompletionResponseStreamChoice
(
BaseModel
):
index
:
int
delta
:
DeltaMessage
finish_reason
:
Optional
[
Literal
[
"stop"
,
"length"
]]
=
None
class
ChatCompletionStreamResponse
(
BaseModel
):
id
:
str
=
Field
(
default_factory
=
lambda
:
f
"chatcmpl-
{
random_uuid
()
}
"
)
object
:
str
=
"chat.completion.chunk"
created
:
int
=
Field
(
default_factory
=
lambda
:
int
(
time
.
time
()))
model
:
str
choices
:
List
[
ChatCompletionResponseStreamChoice
]
server/vllm/vllm/logger.py
0 → 100644
View file @
70056d1e
# Adapted from
# https://github.com/skypilot-org/skypilot/blob/86dc0f6283a335e4aa37b3c10716f90999f48ab6/sky/sky_logging.py
"""Logging configuration for vLLM."""
import
logging
import
sys
_FORMAT
=
"%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s"
_DATE_FORMAT
=
"%m-%d %H:%M:%S"
class
NewLineFormatter
(
logging
.
Formatter
):
"""Adds logging prefix to newlines to align multi-line messages."""
def
__init__
(
self
,
fmt
,
datefmt
=
None
):
logging
.
Formatter
.
__init__
(
self
,
fmt
,
datefmt
)
def
format
(
self
,
record
):
msg
=
logging
.
Formatter
.
format
(
self
,
record
)
if
record
.
message
!=
""
:
parts
=
msg
.
split
(
record
.
message
)
msg
=
msg
.
replace
(
"
\n
"
,
"
\r\n
"
+
parts
[
0
])
return
msg
_root_logger
=
logging
.
getLogger
(
"vllm"
)
_default_handler
=
None
def
_setup_logger
():
_root_logger
.
setLevel
(
logging
.
DEBUG
)
global
_default_handler
if
_default_handler
is
None
:
_default_handler
=
logging
.
StreamHandler
(
sys
.
stdout
)
_default_handler
.
flush
=
sys
.
stdout
.
flush
# type: ignore
_default_handler
.
setLevel
(
logging
.
INFO
)
_root_logger
.
addHandler
(
_default_handler
)
fmt
=
NewLineFormatter
(
_FORMAT
,
datefmt
=
_DATE_FORMAT
)
_default_handler
.
setFormatter
(
fmt
)
# Setting this will avoid the message
# being propagated to the parent logger.
_root_logger
.
propagate
=
False
# The logger is initialized when the module is imported.
# This is thread-safe as the module is only imported once,
# guaranteed by the Python GIL.
_setup_logger
()
def
init_logger
(
name
:
str
):
return
logging
.
getLogger
(
name
)
server/vllm/vllm/model_executor/__init__.py
0 → 100644
View file @
70056d1e
from
vllm.model_executor.input_metadata
import
InputMetadata
from
vllm.model_executor.model_loader
import
get_model
from
vllm.model_executor.utils
import
set_random_seed
__all__
=
[
"InputMetadata"
,
"get_model"
,
"set_random_seed"
,
]
server/vllm/vllm/model_executor/input_metadata.py
0 → 100644
View file @
70056d1e
from
typing
import
Dict
,
List
,
Optional
,
Tuple
import
torch
from
xformers.ops
import
AttentionBias
from
vllm.sampling_params
import
SamplingParams
from
vllm.sequence
import
SequenceData
class
InputMetadata
:
"""Metadata for input sequences. Used for PagedAttention.
Args:
seq_groups: List of (seq_ids, sampling_params).
seq_data: Seq_id -> SequenceData.
prompt_lens: Lengths of prompts.
slot_mapping: The address to write the new KV to of each token.
context_lens: the length of attention context for each generation token.
max_context_len: The maximum context length.
block_tables: The block tables. (Seq id -> list of physical block)
"""
def
__init__
(
self
,
seq_groups
:
List
[
Tuple
[
List
[
int
],
SamplingParams
]],
seq_data
:
Dict
[
int
,
SequenceData
],
prompt_lens
:
List
[
int
],
slot_mapping
:
torch
.
Tensor
,
context_lens
:
torch
.
Tensor
,
max_context_len
:
int
,
block_tables
:
torch
.
Tensor
,
sliding_window
:
Optional
[
int
]
=
None
,
)
->
None
:
self
.
seq_groups
=
seq_groups
self
.
seq_data
=
seq_data
self
.
prompt_lens
=
prompt_lens
self
.
slot_mapping
=
slot_mapping
self
.
context_lens
=
context_lens
self
.
max_context_len
=
max_context_len
self
.
block_tables
=
block_tables
self
.
max_prompt_len
=
max
(
prompt_lens
)
if
prompt_lens
else
0
self
.
to_cache
=
None
if
sliding_window
is
not
None
:
# We need to keep the positions of sliding windows within
# the key / value tables, this is helpful to know which
# elements we need to cache.
to_cache
,
start_idx
=
[],
0
for
prompt_len
in
self
.
prompt_lens
:
to_cache
.
extend
(
range
(
start_idx
+
max
(
0
,
prompt_len
-
sliding_window
),
start_idx
+
prompt_len
,
))
start_idx
+=
self
.
max_prompt_len
to_cache
.
extend
(
range
(
start_idx
,
slot_mapping
.
shape
[
0
]))
self
.
to_cache
=
torch
.
tensor
(
to_cache
,
dtype
=
torch
.
int32
,
device
=
self
.
slot_mapping
.
device
)
self
.
num_prompts
=
len
(
prompt_lens
)
self
.
num_prompt_tokens
=
self
.
num_prompts
*
self
.
max_prompt_len
self
.
num_generation_tokens
=
context_lens
.
shape
[
0
]
if
block_tables
.
numel
()
>
0
:
self
.
max_num_blocks_per_seq
=
block_tables
.
shape
[
1
]
else
:
self
.
max_num_blocks_per_seq
=
0
assert
block_tables
.
shape
[
0
]
==
self
.
num_generation_tokens
assert
context_lens
.
shape
[
0
]
==
self
.
num_generation_tokens
# Set during the execution of the first attention op.
self
.
attn_bias
:
Optional
[
AttentionBias
]
=
None
def
__repr__
(
self
)
->
str
:
# Print only useful metadata.
return
(
f
'InputMetadata('
f
'num_prompt_tokens=
{
self
.
num_prompt_tokens
}
, '
f
'num_prompts=
{
self
.
num_prompts
}
, '
f
'prompt_lens=
{
self
.
prompt_lens
}
, '
f
'num_generation_tokens=
{
self
.
num_generation_tokens
}
, '
f
'context_lens=
{
self
.
context_lens
}
, '
f
'max_context_len=
{
self
.
max_context_len
}
), '
f
'max_num_blocks_per_seq=
{
self
.
max_num_blocks_per_seq
}
, '
f
'block_tables=
{
self
.
block_tables
}
), '
f
'slot_mapping=
{
self
.
slot_mapping
}
'
)
server/vllm/vllm/model_executor/layers/__init__.py
0 → 100644
View file @
70056d1e
server/vllm/vllm/model_executor/layers/activation.py
0 → 100644
View file @
70056d1e
"""Custom activation functions."""
import
torch
import
torch.nn
as
nn
from
vllm
import
activation_ops
class
SiluAndMul
(
nn
.
Module
):
"""An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes:
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
return: (batch_size, seq_len, d) or (num_tokens, d)
"""
def
forward
(
self
,
x
:
torch
.
Tensor
)
->
torch
.
Tensor
:
d
=
x
.
shape
[
-
1
]
//
2
output_shape
=
(
x
.
shape
[:
-
1
]
+
(
d
,
))
out
=
torch
.
empty
(
output_shape
,
dtype
=
x
.
dtype
,
device
=
x
.
device
)
activation_ops
.
silu_and_mul
(
out
,
x
)
return
out
class
NewGELU
(
nn
.
Module
):
def
forward
(
self
,
x
:
torch
.
Tensor
)
->
torch
.
Tensor
:
out
=
torch
.
empty_like
(
x
)
activation_ops
.
gelu_new
(
out
,
x
)
return
out
class
FastGELU
(
nn
.
Module
):
def
forward
(
self
,
x
:
torch
.
Tensor
)
->
torch
.
Tensor
:
out
=
torch
.
empty_like
(
x
)
activation_ops
.
gelu_fast
(
out
,
x
)
return
out
_ACTIVATION_REGISTRY
=
{
"gelu"
:
nn
.
GELU
(),
"gelu_fast"
:
FastGELU
(),
"gelu_new"
:
NewGELU
(),
"gelu_pytorch_tanh"
:
nn
.
GELU
(
approximate
=
"tanh"
),
"relu"
:
nn
.
ReLU
(),
}
def
get_act_fn
(
act_fn
:
str
)
->
nn
.
Module
:
"""Get an activation function by name."""
act_fn
=
act_fn
.
lower
()
if
act_fn
in
_ACTIVATION_REGISTRY
:
return
_ACTIVATION_REGISTRY
[
act_fn
]
raise
ValueError
(
f
"Activation function
{
act_fn
!
r
}
is not supported."
)
server/vllm/vllm/model_executor/layers/attention.py
0 → 100644
View file @
70056d1e
"""Multi-head attention."""
from
typing
import
Any
,
Dict
,
List
,
Optional
import
torch
import
torch.nn
as
nn
from
xformers
import
ops
as
xops
from
xformers.ops.fmha.attn_bias
import
(
BlockDiagonalCausalMask
,
LowerTriangularMaskWithTensorBias
)
from
vllm
import
attention_ops
from
vllm
import
cache_ops
from
vllm.model_executor.input_metadata
import
InputMetadata
from
vllm.model_executor.layers.rotary_embedding
import
(
DynamicNTKScalingRotaryEmbedding
,
LinearScalingRotaryEmbedding
,
RotaryEmbedding
)
_SUPPORTED_HEAD_SIZES
=
[
64
,
80
,
96
,
112
,
128
,
256
]
# Should be the same as PARTITION_SIZE in `paged_attention_v2_launcher`.
_PARTITION_SIZE
=
512
class
PagedAttention
(
nn
.
Module
):
# pylint: disable=line-too-long
"""GPT-style multi-head PagedAttention.
This class takes query, key, and value tensors as input. The input tensors
can either contain prompt tokens or generation tokens, in addition to
paddings.
The class does the following:
1. Perform multi_query_kv_attention for the prompts. This operation does
not use the KV cache.
2. Wait for the cache operations (e.g., swap, copy) to finish. The cache
operations are issued by the cache engine before executing the forward
pass of the model, and they are executed asynchronously.
3. Reshape and store the input key and value tensors in the KV cache.
4. Perform single_query_cached_kv_attention for the generation tokens.
This operation reads the previous key and value tensors from the KV
cache.
5. Return the output tensor.
"""
def
__init__
(
self
,
num_heads
:
int
,
head_size
:
int
,
scale
:
float
,
num_kv_heads
:
Optional
[
int
]
=
None
,
sliding_window
:
Optional
[
int
]
=
None
)
->
None
:
super
().
__init__
()
self
.
num_heads
=
num_heads
self
.
head_size
=
head_size
self
.
scale
=
float
(
scale
)
self
.
num_kv_heads
=
num_heads
if
num_kv_heads
is
None
else
num_kv_heads
self
.
sliding_window
=
sliding_window
assert
self
.
num_heads
%
self
.
num_kv_heads
==
0
self
.
num_queries_per_kv
=
self
.
num_heads
//
self
.
num_kv_heads
self
.
head_mapping
=
torch
.
repeat_interleave
(
torch
.
arange
(
self
.
num_kv_heads
,
dtype
=
torch
.
int32
,
device
=
"cuda"
),
self
.
num_queries_per_kv
)
if
self
.
head_size
not
in
_SUPPORTED_HEAD_SIZES
:
raise
ValueError
(
f
"head_size (
{
self
.
head_size
}
) is not supported. "
f
"Supported head sizes:
{
_SUPPORTED_HEAD_SIZES
}
."
)
def
set_attn_bias
(
self
,
input_metadata
:
InputMetadata
,
dtype
:
torch
.
dtype
,
)
->
None
:
del
dtype
# Unused.
if
input_metadata
.
attn_bias
is
not
None
:
# Already set by a previous layer.
return
prompt_lens
=
[
input_metadata
.
max_prompt_len
]
*
input_metadata
.
num_prompts
attn_bias
=
BlockDiagonalCausalMask
.
from_seqlens
(
prompt_lens
)
if
self
.
sliding_window
is
not
None
:
attn_bias
=
attn_bias
.
make_local_attention
(
self
.
sliding_window
)
input_metadata
.
attn_bias
=
attn_bias
def
multi_query_kv_attention
(
self
,
output
:
torch
.
Tensor
,
query
:
torch
.
Tensor
,
key
:
torch
.
Tensor
,
value
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
)
->
torch
.
Tensor
:
"""Normal attention for the prompt tokens.
Args:
output: shape = [num_prompt_tokens, num_heads, head_size]
query: shape = [num_prompt_tokens, num_heads, head_size]
key: shape = [num_prompt_tokens, num_kv_heads, head_size]
value: shape = [num_prompt_tokens, num_kv_heads, head_size]
input_metadata: metadata for paged attention.
"""
if
self
.
num_kv_heads
!=
self
.
num_heads
:
# Project the key and value tensors to the desired number of heads.
key
=
torch
.
repeat_interleave
(
key
,
self
.
num_queries_per_kv
,
dim
=
1
)
value
=
torch
.
repeat_interleave
(
value
,
self
.
num_queries_per_kv
,
dim
=
1
)
# TODO(woosuk): The unsqueeze op may incur some CPU overhead. Optimize.
out
=
xops
.
memory_efficient_attention_forward
(
query
.
unsqueeze
(
0
),
key
.
unsqueeze
(
0
),
value
.
unsqueeze
(
0
),
attn_bias
=
input_metadata
.
attn_bias
,
p
=
0.0
,
scale
=
self
.
scale
,
)
# TODO(woosuk): Unnecessary copy. Optimize.
output
.
copy_
(
out
.
squeeze
(
0
))
return
output
def
get_alibi_slopes
(
self
)
->
Optional
[
torch
.
Tensor
]:
"""Returns the slopes for the alibi attention bias.
Returns:
slopes: shape = [num_heads]
"""
return
None
def
single_query_cached_kv_attention
(
self
,
output
:
torch
.
Tensor
,
query
:
torch
.
Tensor
,
key_cache
:
torch
.
Tensor
,
value_cache
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
alibi_slopes
:
Optional
[
torch
.
Tensor
],
)
->
None
:
"""PagedAttention for the generation tokens.
Args:
output: shape = [num_generation_tokens, num_heads, head_size]
query: shape = [num_generation_tokens, num_heads, head_size]
key_cache: shape = [num_blocks, num_kv_heads, head_size/x,
block_size, x]
value_cache: shape = [num_blocks, num_kv_heads, head_size,
block_size]
input_metadata: metadata for paged attention.
alibi_slopes: shape = [num_heads]
"""
block_size
=
value_cache
.
shape
[
3
]
num_seqs
,
num_heads
,
head_size
=
query
.
shape
max_num_partitions
=
(
(
input_metadata
.
max_context_len
+
_PARTITION_SIZE
-
1
)
//
_PARTITION_SIZE
)
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
# V1 to avoid the overhead of reduction. Also, if the number of
# sequences or heads is large, we use V1 since there is enough work
# to parallelize.
# TODO(woosuk): Tune this heuristic.
use_v1
=
max_num_partitions
==
1
or
num_seqs
*
num_heads
>
512
if
use_v1
:
# Run PagedAttention V1.
attention_ops
.
paged_attention_v1
(
output
,
query
,
key_cache
,
value_cache
,
self
.
head_mapping
,
self
.
scale
,
input_metadata
.
block_tables
,
input_metadata
.
context_lens
,
block_size
,
input_metadata
.
max_context_len
,
alibi_slopes
,
)
else
:
# Run PagedAttention V2.
assert
_PARTITION_SIZE
%
block_size
==
0
tmp_output
=
torch
.
empty
(
size
=
(
num_seqs
,
num_heads
,
max_num_partitions
,
head_size
),
dtype
=
output
.
dtype
,
device
=
output
.
device
,
)
exp_sums
=
torch
.
empty
(
size
=
(
num_seqs
,
num_heads
,
max_num_partitions
),
dtype
=
torch
.
float32
,
device
=
output
.
device
,
)
max_logits
=
torch
.
empty_like
(
exp_sums
)
attention_ops
.
paged_attention_v2
(
output
,
exp_sums
,
max_logits
,
tmp_output
,
query
,
key_cache
,
value_cache
,
self
.
head_mapping
,
self
.
scale
,
input_metadata
.
block_tables
,
input_metadata
.
context_lens
,
block_size
,
input_metadata
.
max_context_len
,
alibi_slopes
,
)
def
forward
(
self
,
query
:
torch
.
Tensor
,
key
:
torch
.
Tensor
,
value
:
torch
.
Tensor
,
key_cache
:
Optional
[
torch
.
Tensor
],
value_cache
:
Optional
[
torch
.
Tensor
],
input_metadata
:
InputMetadata
,
cache_event
:
Optional
[
torch
.
cuda
.
Event
],
)
->
torch
.
Tensor
:
"""PagedAttention forward pass.
NOTE: The query, key, and value tensors must be sliced from a qkv
tensor of shape [batch_size, seq_len, 3 * num_heads * head_size].
Args:
query: shape = [batch_size, seq_len, num_heads * head_size]
key: shape = [batch_size, seq_len, num_kv_heads * head_size]
value: shape = [batch_size, num_kv_heads * head_size]
key_cache: shape = [num_blocks, num_kv_heads, head_size/x,
block_size, x]
value_cache: shape = [num_blocks, num_kv_heads, head_size,
block_size]
input_metadata: metadata for paged attention.
cache_event: event to wait for the cache operations to finish.
Returns:
shape = [batch_size, seq_len, num_heads * head_size]
"""
batch_size
,
seq_len
,
_
=
query
.
shape
# Reshape the query, key, and value tensors.
query
=
query
.
view
(
-
1
,
self
.
num_heads
,
self
.
head_size
)
key
=
key
.
view
(
-
1
,
self
.
num_kv_heads
,
self
.
head_size
)
value
=
value
.
view
(
-
1
,
self
.
num_kv_heads
,
self
.
head_size
)
# Pre-allocate the output tensor.
output
=
torch
.
empty_like
(
query
)
# Compute the attention op for prompts.
num_prompt_tokens
=
input_metadata
.
num_prompt_tokens
if
num_prompt_tokens
>
0
:
# Prompt run.
assert
input_metadata
.
num_generation_tokens
==
0
self
.
set_attn_bias
(
input_metadata
,
dtype
=
query
.
dtype
)
self
.
multi_query_kv_attention
(
output
,
query
,
key
,
value
,
input_metadata
,
)
# Wait until the cache op is done.
if
cache_event
is
not
None
:
cache_event
.
wait
()
# Reshape the keys and values and store them in the cache.
# When key_cache and value_cache are not provided, the new key
# and value vectors will not be cached.
if
key_cache
is
not
None
and
value_cache
is
not
None
:
key_to_cache
=
key
value_to_cache
=
value
slot_mapping
=
input_metadata
.
slot_mapping
.
view
(
-
1
)
if
input_metadata
.
to_cache
is
not
None
:
key_to_cache
=
key_to_cache
[
input_metadata
.
to_cache
]
value_to_cache
=
value_to_cache
[
input_metadata
.
to_cache
]
slot_mapping
=
slot_mapping
[
input_metadata
.
to_cache
]
cache_ops
.
reshape_and_cache
(
key_to_cache
,
value_to_cache
,
key_cache
,
value_cache
,
slot_mapping
,
)
if
input_metadata
.
num_generation_tokens
>
0
:
# Decoding run.
assert
input_metadata
.
num_prompt_tokens
==
0
assert
key_cache
is
not
None
and
value_cache
is
not
None
,
(
"key_cache and value_cache must be provided when "
"generating tokens."
)
# Compute the attention op for generation tokens.
self
.
single_query_cached_kv_attention
(
output
,
query
,
key_cache
,
value_cache
,
input_metadata
,
self
.
get_alibi_slopes
())
# Reshape the output tensor.
# NOTE(woosuk): The output tensor may include paddings.
return
output
.
view
(
batch_size
,
seq_len
,
self
.
num_heads
*
self
.
head_size
)
class
PagedAttentionWithRoPE
(
PagedAttention
):
"""PagedAttention with rotary positional embedding."""
def
__init__
(
self
,
num_heads
:
int
,
head_size
:
int
,
scale
:
float
,
rotary_dim
:
int
,
max_position
:
int
=
8192
,
base
:
int
=
10000
,
num_kv_heads
:
Optional
[
int
]
=
None
,
is_neox_style
:
bool
=
True
,
rope_scaling
:
Optional
[
Dict
[
str
,
Any
]]
=
None
,
sliding_window
:
Optional
[
int
]
=
None
,
)
->
None
:
super
().
__init__
(
num_heads
,
head_size
,
scale
,
num_kv_heads
,
sliding_window
=
sliding_window
)
if
rope_scaling
is
None
:
self
.
rotary_emb
=
RotaryEmbedding
(
head_size
,
rotary_dim
,
max_position
,
base
,
is_neox_style
)
else
:
scaling_type
=
rope_scaling
[
"type"
]
scaling_factor
=
rope_scaling
[
"factor"
]
if
scaling_type
==
"linear"
:
self
.
rotary_emb
=
LinearScalingRotaryEmbedding
(
head_size
,
rotary_dim
,
max_position
,
base
,
is_neox_style
,
scaling_factor
)
elif
scaling_type
==
"dynamic"
:
self
.
rotary_emb
=
DynamicNTKScalingRotaryEmbedding
(
head_size
,
rotary_dim
,
max_position
,
base
,
is_neox_style
,
scaling_factor
)
else
:
raise
ValueError
(
f
"Unknown RoPE scaling type
{
scaling_type
}
"
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
query
:
torch
.
Tensor
,
key
:
torch
.
Tensor
,
value
:
torch
.
Tensor
,
key_cache
:
torch
.
Tensor
,
value_cache
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
cache_event
:
Optional
[
torch
.
cuda
.
Event
],
)
->
torch
.
Tensor
:
""" PagedAttention forward pass with rotary embedding.
Args:
positions: shape = [batch_size, seq_len]
query: shape = [batch_size, seq_len, num_heads * head_size]
key: shape = [batch_size, seq_len, num_kv_heads * head_size]
value: shape = [batch_size, seq_len, num_kv_heads * head_size]
key_cache: shape = [num_blocks, num_kv_heads, head_size/x,
block_size, x]
value_cache: shape = [num_blocks, num_kv_heads, head_size,
block_size]
input_metadata: metadata for paged attention.
cache_event: event to wait for the cache operations to finish.
Returns:
shape = [batch_size, seq_len, num_heads * head_size]
"""
# Apply rotary embedding to the query and key before passing them
# to the attention op.
query
,
key
=
self
.
rotary_emb
(
positions
,
query
,
key
)
return
super
().
forward
(
query
,
key
,
value
,
key_cache
,
value_cache
,
input_metadata
,
cache_event
,
)
class
PagedAttentionWithALiBi
(
PagedAttention
):
"""PagedAttention with ALiBi attention bias."""
def
__init__
(
self
,
num_heads
:
int
,
head_size
:
int
,
scale
:
float
,
slopes
:
List
[
float
],
num_kv_heads
:
Optional
[
int
]
=
None
)
->
None
:
super
().
__init__
(
num_heads
,
head_size
,
scale
,
num_kv_heads
)
assert
len
(
slopes
)
==
num_heads
slopes
=
torch
.
tensor
(
slopes
,
dtype
=
torch
.
float32
)
self
.
register_buffer
(
"alibi_slopes"
,
slopes
,
persistent
=
False
)
def
set_attn_bias
(
self
,
input_metadata
:
InputMetadata
,
dtype
:
torch
.
dtype
)
->
None
:
if
input_metadata
.
attn_bias
is
not
None
:
# Already set by a previous layer.
return
# Generates ALiBi mask based on the max prompt length.
max_prompt_len
=
input_metadata
.
max_prompt_len
bias
=
torch
.
arange
(
max_prompt_len
,
dtype
=
dtype
)
# NOTE(zhuohan): HF uses
# `bias = bias[None, :].repeat(prompt_len, 1)`
# here. We find that both biases give the same results, but
# the bias below more accurately follows the original ALiBi
# paper.
bias
=
bias
[
None
,
:]
-
bias
[:,
None
]
bias
=
bias
.
to
(
self
.
alibi_slopes
.
device
)
# When using custom attention bias, xformers requires the bias to
# be sliced from a tensor whose length is a multiple of 8.
padded_len
=
(
max_prompt_len
+
7
)
//
8
*
8
bias
=
torch
.
empty
(
input_metadata
.
num_prompts
,
self
.
num_heads
,
max_prompt_len
,
padded_len
,
device
=
self
.
alibi_slopes
.
device
,
dtype
=
dtype
,
)[:,
:,
:,
:
max_prompt_len
].
copy_
(
bias
)
bias
.
mul_
(
self
.
alibi_slopes
[:,
None
,
None
])
attn_bias
=
LowerTriangularMaskWithTensorBias
(
bias
)
input_metadata
.
attn_bias
=
attn_bias
def
multi_query_kv_attention
(
self
,
output
:
torch
.
Tensor
,
query
:
torch
.
Tensor
,
key
:
torch
.
Tensor
,
value
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
)
->
torch
.
Tensor
:
"""Attention with ALiBi bias for the prompt tokens.
Args:
output: shape = [num_prompt_tokens, num_heads, head_size]
query: shape = [num_prompt_tokens, num_heads, head_size]
key: shape = [num_prompt_tokens, num_kv_heads, head_size]
value: shape = [num_prompt_tokens, num_kv_heads, head_size]
input_metadata: metadata for paged attention.
"""
if
self
.
num_kv_heads
!=
self
.
num_heads
:
# Project the key and value tensors to the desired number of heads.
key
=
torch
.
repeat_interleave
(
key
,
self
.
num_queries_per_kv
,
dim
=
1
)
value
=
torch
.
repeat_interleave
(
value
,
self
.
num_queries_per_kv
,
dim
=
1
)
batch_size
=
input_metadata
.
num_prompts
seq_len
=
input_metadata
.
max_prompt_len
out
=
xops
.
memory_efficient_attention_forward
(
query
.
view
(
batch_size
,
seq_len
,
self
.
num_heads
,
self
.
head_size
),
key
.
view
(
batch_size
,
seq_len
,
self
.
num_heads
,
self
.
head_size
),
value
.
view
(
batch_size
,
seq_len
,
self
.
num_heads
,
self
.
head_size
),
attn_bias
=
input_metadata
.
attn_bias
,
p
=
0.0
,
scale
=
self
.
scale
,
)
# TODO(woosuk): Unnecessary copy. Optimize.
output
.
copy_
(
out
.
view
(
-
1
,
self
.
num_heads
,
self
.
head_size
))
return
output
def
get_alibi_slopes
(
self
)
->
Optional
[
torch
.
Tensor
]:
return
self
.
alibi_slopes
server/vllm/vllm/model_executor/layers/layernorm.py
0 → 100644
View file @
70056d1e
"""Custom normalization layers."""
import
torch
import
torch.nn
as
nn
from
vllm
import
layernorm_ops
class
RMSNorm
(
nn
.
Module
):
"""Root mean square normalization.
Computes x -> w * x / sqrt(E[x^2] + eps) where w is the learned weight.
Refer to https://arxiv.org/abs/1910.07467
"""
def
__init__
(
self
,
hidden_size
:
int
,
eps
:
float
=
1e-6
,
)
->
None
:
super
().
__init__
()
self
.
weight
=
nn
.
Parameter
(
torch
.
ones
(
hidden_size
))
self
.
variance_epsilon
=
eps
def
forward
(
self
,
x
:
torch
.
Tensor
)
->
torch
.
Tensor
:
out
=
torch
.
empty_like
(
x
)
layernorm_ops
.
rms_norm
(
out
,
x
,
self
.
weight
.
data
,
self
.
variance_epsilon
,
)
return
out
server/vllm/vllm/model_executor/layers/quantized_linear/__init__.py
0 → 100644
View file @
70056d1e
from
vllm.model_executor.layers.quantized_linear.awq
import
(
AWQColumnParallelLinear
,
AWQRowParallelLinear
)
from
vllm.model_executor.parallel_utils.layers
import
(
ColumnParallelLinear
,
RowParallelLinear
)
_QUANTIZED_LINEAR_REGISTRY
=
{
"awq"
:
(
AWQColumnParallelLinear
,
AWQRowParallelLinear
),
}
class
ParallelLinear
:
@
classmethod
def
column
(
cls
,
*
args
,
**
kwargs
)
->
ColumnParallelLinear
:
quant_config
=
kwargs
.
get
(
"quant_config"
,
None
)
if
quant_config
is
None
:
return
ColumnParallelLinear
(
*
args
,
**
kwargs
)
name
=
quant_config
.
get_name
()
if
name
not
in
_QUANTIZED_LINEAR_REGISTRY
:
raise
ValueError
(
f
"No quantized linear is found for
{
name
}
"
)
quant_linear_cls
=
_QUANTIZED_LINEAR_REGISTRY
[
name
][
0
]
return
quant_linear_cls
(
*
args
,
**
kwargs
)
@
classmethod
def
row
(
cls
,
*
args
,
**
kwargs
)
->
RowParallelLinear
:
quant_config
=
kwargs
.
get
(
"quant_config"
,
None
)
if
quant_config
is
None
:
return
RowParallelLinear
(
*
args
,
**
kwargs
)
name
=
quant_config
.
get_name
()
if
name
not
in
_QUANTIZED_LINEAR_REGISTRY
:
raise
ValueError
(
f
"No quantized linear is found for
{
name
}
"
)
quant_linear_cls
=
_QUANTIZED_LINEAR_REGISTRY
[
name
][
1
]
return
quant_linear_cls
(
*
args
,
**
kwargs
)
server/vllm/vllm/model_executor/layers/quantized_linear/awq.py
0 → 100644
View file @
70056d1e
from
typing
import
Optional
import
torch
from
torch.nn.parameter
import
Parameter
from
vllm
import
quantization_ops
from
vllm.model_executor.parallel_utils.layers
import
(
ColumnParallelLinear
,
RowParallelLinear
)
class
AWQColumnParallelLinear
(
ColumnParallelLinear
):
def
create_weights
(
self
,
dtype
:
torch
.
dtype
)
->
None
:
assert
self
.
input_size
%
self
.
quant_config
.
weight_bits
==
0
assert
(
self
.
output_size_per_partition
%
self
.
quant_config
.
pack_factor
==
0
)
self
.
qweight
=
Parameter
(
torch
.
empty
(
self
.
input_size
,
self
.
output_size_per_partition
//
self
.
quant_config
.
pack_factor
,
device
=
"cuda"
,
dtype
=
torch
.
int32
,
),
requires_grad
=
False
,
)
self
.
qzeros
=
Parameter
(
torch
.
empty
(
self
.
input_size
//
self
.
quant_config
.
group_size
,
self
.
output_size_per_partition
//
self
.
quant_config
.
pack_factor
,
device
=
"cuda"
,
dtype
=
torch
.
int32
,
),
requires_grad
=
False
,
)
self
.
scales
=
Parameter
(
torch
.
empty
(
self
.
input_size
//
self
.
quant_config
.
group_size
,
self
.
output_size_per_partition
,
device
=
"cuda"
,
dtype
=
dtype
,
),
requires_grad
=
False
,
)
def
apply_weights
(
self
,
x
:
torch
.
Tensor
,
bias
:
Optional
[
torch
.
Tensor
],
)
->
torch
.
Tensor
:
pack_factor
=
self
.
quant_config
.
pack_factor
out_shape
=
(
x
.
shape
[:
-
1
]
+
(
self
.
qweight
.
shape
[
-
1
]
*
pack_factor
,
))
reshaped_x
=
x
.
reshape
(
-
1
,
x
.
shape
[
-
1
])
out
=
quantization_ops
.
awq_gemm
(
reshaped_x
,
self
.
qweight
,
self
.
scales
,
self
.
qzeros
,
pack_factor
)
if
bias
is
not
None
:
out
=
out
+
bias
return
out
.
reshape
(
out_shape
)
class
AWQRowParallelLinear
(
RowParallelLinear
):
def
create_weights
(
self
,
dtype
:
torch
.
dtype
)
->
None
:
assert
(
self
.
input_size_per_partition
%
self
.
quant_config
.
weight_bits
==
0
)
assert
self
.
output_size
%
self
.
quant_config
.
pack_factor
==
0
self
.
qweight
=
Parameter
(
torch
.
empty
(
self
.
input_size_per_partition
,
self
.
output_size
//
self
.
quant_config
.
pack_factor
,
device
=
"cuda"
,
dtype
=
torch
.
int32
,
),
requires_grad
=
False
,
)
self
.
qzeros
=
Parameter
(
torch
.
empty
(
self
.
input_size_per_partition
//
self
.
quant_config
.
group_size
,
self
.
output_size
//
self
.
quant_config
.
pack_factor
,
device
=
"cuda"
,
dtype
=
torch
.
int32
,
),
requires_grad
=
False
,
)
self
.
scales
=
Parameter
(
torch
.
empty
(
self
.
input_size_per_partition
//
self
.
quant_config
.
group_size
,
self
.
output_size
,
device
=
"cuda"
,
dtype
=
dtype
,
),
requires_grad
=
False
,
)
def
apply_weights
(
self
,
x
:
torch
.
Tensor
)
->
torch
.
Tensor
:
pack_factor
=
self
.
quant_config
.
pack_factor
out_shape
=
(
x
.
shape
[:
-
1
]
+
(
self
.
qweight
.
shape
[
-
1
]
*
pack_factor
,
))
reshaped_x
=
x
.
reshape
(
-
1
,
x
.
shape
[
-
1
])
out
=
quantization_ops
.
awq_gemm
(
reshaped_x
,
self
.
qweight
,
self
.
scales
,
self
.
qzeros
,
pack_factor
)
return
out
.
reshape
(
out_shape
)
server/vllm/vllm/model_executor/layers/rotary_embedding.py
0 → 100644
View file @
70056d1e
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Rotary Positional Embeddings."""
from
typing
import
Tuple
,
Union
import
torch
import
torch.nn
as
nn
from
vllm
import
pos_encoding_ops
class
RotaryEmbedding
(
nn
.
Module
):
"""Original rotary positional embedding."""
def
__init__
(
self
,
head_size
:
int
,
rotary_dim
:
int
,
max_position_embeddings
:
int
,
base
:
int
,
is_neox_style
:
bool
,
)
->
None
:
super
().
__init__
()
self
.
head_size
=
head_size
self
.
rotary_dim
=
rotary_dim
self
.
max_position_embeddings
=
max_position_embeddings
self
.
base
=
base
self
.
is_neox_style
=
is_neox_style
cache
=
self
.
_compute_cos_sin_cache
()
cache
=
cache
.
to
(
torch
.
get_default_dtype
())
self
.
register_buffer
(
"cos_sin_cache"
,
cache
,
persistent
=
False
)
def
_compute_inv_freq
(
self
,
base
:
Union
[
int
,
float
])
->
torch
.
Tensor
:
"""Compute the inverse frequency."""
# NOTE(woosuk): The HF implementation uses `torch.arange(...).float()`.
# However, we use `torch.arange(..., dtype=torch.float)` instead to
# avoid numerical issues with large base values (e.g., 10000000).
# This may cause a slight numerical difference between the HF
# implementation and ours.
# NOTE(woosuk): To exactly match the HF implementation, we need to
# use CPU to compute the cache and then move it to GPU. However, we
# create the cache on GPU for faster initialization. This may cause
# a slight numerical difference between the HF implementation and ours.
inv_freq
=
1.0
/
(
base
**
(
torch
.
arange
(
0
,
self
.
rotary_dim
,
2
,
dtype
=
torch
.
float
,
device
=
"cuda"
)
/
self
.
rotary_dim
))
return
inv_freq
def
_compute_cos_sin_cache
(
self
)
->
torch
.
Tensor
:
"""Compute the cos and sin cache."""
inv_freq
=
self
.
_compute_inv_freq
(
self
.
base
)
t
=
torch
.
arange
(
self
.
max_position_embeddings
,
dtype
=
torch
.
float
,
device
=
"cuda"
)
freqs
=
torch
.
einsum
(
"i,j -> ij"
,
t
,
inv_freq
)
cos
=
freqs
.
cos
()
sin
=
freqs
.
sin
()
cache
=
torch
.
cat
((
cos
,
sin
),
dim
=-
1
)
return
cache
def
forward
(
self
,
positions
:
torch
.
Tensor
,
query
:
torch
.
Tensor
,
key
:
torch
.
Tensor
,
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
# pos_encoding_ops.rotary_embedding() is an in-place operation that
# updates the query and key tensors.
pos_encoding_ops
.
rotary_embedding
(
positions
,
query
,
key
,
self
.
head_size
,
self
.
cos_sin_cache
,
self
.
is_neox_style
)
return
query
,
key
class
LinearScalingRotaryEmbedding
(
RotaryEmbedding
):
"""RotaryEmbedding extended with linear scaling.
Credits to the Reddit user /u/kaiokendev
"""
def
__init__
(
self
,
head_size
:
int
,
rotary_dim
:
int
,
max_position_embeddings
:
int
,
base
:
int
,
is_neox_style
:
bool
,
scaling_factor
:
float
,
)
->
None
:
self
.
scaling_factor
=
scaling_factor
super
().
__init__
(
head_size
,
rotary_dim
,
max_position_embeddings
,
base
,
is_neox_style
)
def
_compute_cos_sin_cache
(
self
)
->
torch
.
Tensor
:
inv_freq
=
self
.
_compute_inv_freq
(
self
.
base
)
# NOTE(woosuk): self.max_position_embeddings is the original
# maximum length before applying the rope scaling.
# Thus, the maximum length after applying the rope scaling is
# self.max_position_embeddings * self.scaling_factor.
max_len
=
self
.
max_position_embeddings
*
self
.
scaling_factor
t
=
torch
.
arange
(
max_len
,
dtype
=
torch
.
float
,
device
=
"cuda"
)
t
=
t
/
self
.
scaling_factor
freqs
=
torch
.
einsum
(
"i,j -> ij"
,
t
,
inv_freq
)
cos
=
freqs
.
cos
()
sin
=
freqs
.
sin
()
cache
=
torch
.
cat
((
cos
,
sin
),
dim
=-
1
)
return
cache
class
DynamicNTKScalingRotaryEmbedding
(
RotaryEmbedding
):
"""RotaryEmbedding extended with Dynamic NTK scaling.
Credits to the Reddit users /u/bloc97 and /u/emozilla
"""
def
__init__
(
self
,
head_size
:
int
,
rotary_dim
:
int
,
max_position_embeddings
:
int
,
base
:
int
,
is_neox_style
:
bool
,
scaling_factor
:
float
,
)
->
None
:
self
.
scaling_factor
=
scaling_factor
super
().
__init__
(
head_size
,
rotary_dim
,
max_position_embeddings
,
base
,
is_neox_style
)
def
_compute_cos_sin_cache
(
self
)
->
torch
.
Tensor
:
# NOTE(woosuk): self.max_position_embeddings is the original
# maximum length before applying the rope scaling.
# Thus, the maximum length after applying the rope scaling is
# self.max_position_embeddings * self.scaling_factor.
max_len
=
self
.
max_position_embeddings
*
self
.
scaling_factor
base
=
self
.
base
*
(
(
self
.
scaling_factor
*
max_len
/
self
.
max_position_embeddings
)
-
(
self
.
scaling_factor
-
1
))
**
(
self
.
rotary_dim
/
(
self
.
rotary_dim
-
2
))
inv_freq
=
self
.
_compute_inv_freq
(
base
)
t
=
torch
.
arange
(
max_len
,
dtype
=
torch
.
float
,
device
=
"cuda"
)
freqs
=
torch
.
einsum
(
"i,j -> ij"
,
t
,
inv_freq
)
cos
=
freqs
.
cos
()
sin
=
freqs
.
sin
()
cache
=
torch
.
cat
((
cos
,
sin
),
dim
=-
1
)
return
cache
server/vllm/vllm/model_executor/layers/sampler.py
0 → 100644
View file @
70056d1e
"""A layer that samples the next tokens from the model's outputs."""
from
typing
import
Dict
,
List
,
Optional
,
Tuple
import
torch
import
torch.nn
as
nn
from
vllm.model_executor.input_metadata
import
InputMetadata
from
vllm.model_executor.parallel_utils.communication_op
import
(
tensor_model_parallel_all_gather
)
from
vllm.sampling_params
import
SamplingParams
,
SamplingType
from
vllm.sequence
import
(
PromptLogprobs
,
SampleLogprobs
,
SamplerOutput
,
SequenceData
,
SequenceGroupOutputs
,
SequenceOutputs
)
_SAMPLING_EPS
=
1e-5
class
Sampler
(
nn
.
Module
):
"""Samples the next tokens from the model's outputs.
This layer does the following:
1. Discard the hidden states that are not used for sampling (i.e., all
tokens except the final one in each prompt).
2. Compute the logits for the next tokens.
3. Apply presence and frequency penalties.
4. Apply temperature scaling.
5. Apply top-p and top-k truncation.
6. Sample the next tokens.
Here, each sequence group within the batch can have different sampling
parameters (e.g., sampling method, temperature, top-p, top-k, etc.).
"""
def
__init__
(
self
,
vocab_size
:
int
)
->
None
:
super
().
__init__
()
self
.
vocab_size
=
vocab_size
def
forward
(
self
,
embedding
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
embedding_bias
:
Optional
[
torch
.
Tensor
]
=
None
,
)
->
SamplerOutput
:
# Get the hidden states that we use for sampling.
hidden_states
=
_prune_hidden_states
(
hidden_states
,
input_metadata
)
# Get the logits for the next tokens.
logits
=
_get_logits
(
hidden_states
,
embedding
,
embedding_bias
,
self
.
vocab_size
)
# Apply presence and frequency penalties.
output_tokens
=
_get_output_tokens
(
input_metadata
)
assert
len
(
output_tokens
)
==
logits
.
shape
[
0
]
presence_penalties
,
frequency_penalties
=
_get_penalties
(
input_metadata
)
assert
len
(
presence_penalties
)
==
logits
.
shape
[
0
]
assert
len
(
frequency_penalties
)
==
logits
.
shape
[
0
]
logits
=
_apply_penalties
(
logits
,
output_tokens
,
presence_penalties
,
frequency_penalties
)
# Apply temperature scaling.
temperatures
=
_get_temperatures
(
input_metadata
)
assert
len
(
temperatures
)
==
logits
.
shape
[
0
]
if
any
(
t
!=
1.0
for
t
in
temperatures
):
t
=
torch
.
tensor
(
temperatures
,
dtype
=
logits
.
dtype
,
device
=
logits
.
device
)
# Use in-place division to avoid creating a new tensor.
logits
.
div_
(
t
.
unsqueeze
(
dim
=
1
))
# Apply top-p and top-k truncation.
top_ps
,
top_ks
=
_get_top_p_top_k
(
input_metadata
,
self
.
vocab_size
)
assert
len
(
top_ps
)
==
len
(
top_ks
)
==
logits
.
shape
[
0
]
do_top_p
=
any
(
p
<
1.0
-
_SAMPLING_EPS
for
p
in
top_ps
)
do_top_k
=
any
(
k
!=
self
.
vocab_size
for
k
in
top_ks
)
if
do_top_p
or
do_top_k
:
logits
=
_apply_top_p_top_k
(
logits
,
top_ps
,
top_ks
)
# We use float32 for probabilities and log probabilities.
# Compute the probabilities.
probs
=
torch
.
softmax
(
logits
,
dim
=-
1
,
dtype
=
torch
.
float
)
# Compute the log probabilities.
# Use log_softmax to ensure numerical stability.
logprobs
=
torch
.
log_softmax
(
logits
,
dim
=-
1
,
dtype
=
torch
.
float
)
# Sample the next tokens.
sample_results
=
_sample
(
probs
,
logprobs
,
input_metadata
)
# Get the logprobs query results.
prompt_logprobs
,
sample_logprobs
=
_get_logprobs
(
logprobs
,
input_metadata
,
sample_results
)
return
_build_sampler_output
(
sample_results
,
input_metadata
,
prompt_logprobs
,
sample_logprobs
)
def
_get_logits
(
hidden_states
:
torch
.
Tensor
,
embedding
:
torch
.
Tensor
,
embedding_bias
:
Optional
[
torch
.
Tensor
],
vocab_size
:
int
)
->
torch
.
Tensor
:
# Get the logits for the next tokens.
logits
=
torch
.
matmul
(
hidden_states
,
embedding
.
t
())
if
embedding_bias
is
not
None
:
logits
+=
embedding_bias
logits
=
tensor_model_parallel_all_gather
(
logits
)
# Remove paddings in vocab (if any).
logits
=
logits
[:,
:
vocab_size
]
return
logits
def
_prune_hidden_states
(
hidden_states
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
)
->
torch
.
Tensor
:
selected_token_indices
:
List
[
int
]
=
[]
start_idx
=
0
for
i
,
seq_group
in
enumerate
(
input_metadata
.
seq_groups
):
seq_ids
,
sampling_params
=
seq_group
if
i
<
input_metadata
.
num_prompts
:
assert
len
(
seq_ids
)
==
1
,
"Prompt input should have only one seq."
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
if
sampling_params
.
prompt_logprobs
is
not
None
:
selected_token_indices
.
extend
(
range
(
start_idx
,
start_idx
+
prompt_len
-
1
))
selected_token_indices
.
append
(
start_idx
+
prompt_len
-
1
)
start_idx
+=
input_metadata
.
max_prompt_len
else
:
num_seqs
=
len
(
seq_ids
)
selected_token_indices
.
extend
(
range
(
start_idx
,
start_idx
+
num_seqs
))
start_idx
+=
num_seqs
selected_token_indices
=
torch
.
tensor
(
selected_token_indices
,
dtype
=
torch
.
long
,
device
=
hidden_states
.
device
)
hidden_states
=
hidden_states
.
view
(
-
1
,
hidden_states
.
shape
[
-
1
])
return
hidden_states
.
index_select
(
0
,
selected_token_indices
)
def
_get_penalties
(
input_metadata
:
InputMetadata
)
->
Tuple
[
List
[
float
],
List
[
float
]]:
# Collect the presence and frequency penalties.
presence_penalties
:
List
[
float
]
=
[]
frequency_penalties
:
List
[
float
]
=
[]
for
i
,
seq_group
in
enumerate
(
input_metadata
.
seq_groups
):
seq_ids
,
sampling_params
=
seq_group
p
=
sampling_params
.
presence_penalty
f
=
sampling_params
.
frequency_penalty
if
(
i
<
input_metadata
.
num_prompts
and
sampling_params
.
prompt_logprobs
is
not
None
):
# NOTE: We do not apply presence and frequency penalties for the
# prompt token positions where we don't sample new tokens.
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
presence_penalties
+=
[
0
]
*
(
prompt_len
-
1
)
frequency_penalties
+=
[
0
]
*
(
prompt_len
-
1
)
presence_penalties
+=
[
p
]
*
len
(
seq_ids
)
frequency_penalties
+=
[
f
]
*
len
(
seq_ids
)
return
presence_penalties
,
frequency_penalties
def
_get_output_tokens
(
input_metadata
:
InputMetadata
)
->
List
[
List
[
int
]]:
output_tokens
:
List
[
List
[
int
]]
=
[]
for
i
,
seq_group
in
enumerate
(
input_metadata
.
seq_groups
):
seq_ids
,
sampling_params
=
seq_group
if
(
i
<
input_metadata
.
num_prompts
and
sampling_params
.
prompt_logprobs
is
not
None
):
# NOTE: prompt token positions do not need output tokens to
# compute penalties.
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
output_tokens
.
extend
([]
for
_
in
range
(
prompt_len
-
1
))
for
seq_id
in
seq_ids
:
seq_data
=
input_metadata
.
seq_data
[
seq_id
]
output_tokens
.
append
(
seq_data
.
output_token_ids
)
return
output_tokens
def
_apply_penalties
(
logits
:
torch
.
Tensor
,
output_tokens
:
List
[
List
[
int
]],
presence_penalties
:
List
[
float
],
frequency_penalties
:
List
[
float
],
)
->
torch
.
Tensor
:
num_seqs
,
vocab_size
=
logits
.
shape
for
i
in
range
(
num_seqs
):
if
not
output_tokens
[
i
]:
continue
p
=
presence_penalties
[
i
]
f
=
frequency_penalties
[
i
]
if
abs
(
p
)
<
_SAMPLING_EPS
and
abs
(
f
)
<
_SAMPLING_EPS
:
continue
break
else
:
# Return early if all sequences have zero penalties.
return
logits
max_output_len
=
max
(
len
(
tokens
)
for
tokens
in
output_tokens
)
padded_output_tokens
=
[
tokens
+
[
vocab_size
]
*
(
max_output_len
-
len
(
tokens
))
for
tokens
in
output_tokens
]
output_tokens_tensor
=
torch
.
tensor
(
padded_output_tokens
,
dtype
=
torch
.
long
,
device
=
logits
.
device
)
# Compute the bin counts for the output tokens.
# vocab_size + 1 for padding.
bin_counts
=
torch
.
zeros
((
num_seqs
,
vocab_size
+
1
),
dtype
=
torch
.
long
,
device
=
logits
.
device
)
bin_counts
.
scatter_add_
(
1
,
output_tokens_tensor
,
torch
.
ones_like
(
output_tokens_tensor
))
bin_counts
=
bin_counts
[:,
:
vocab_size
]
# Remove the padding bin.
frequency_penalties
=
torch
.
tensor
(
frequency_penalties
,
dtype
=
logits
.
dtype
,
device
=
logits
.
device
)
presence_penalties
=
torch
.
tensor
(
presence_penalties
,
dtype
=
logits
.
dtype
,
device
=
logits
.
device
)
# We follow the definition in OpenAI API.
# Refer to https://platform.openai.com/docs/api-reference/parameter-details
logits
-=
frequency_penalties
.
unsqueeze
(
dim
=
1
)
*
bin_counts
logits
-=
presence_penalties
.
unsqueeze
(
dim
=
1
)
*
(
bin_counts
>
0
)
return
logits
def
_get_temperatures
(
input_metadata
:
InputMetadata
)
->
List
[
float
]:
# Collect the temperatures for the logits.
temperatures
:
List
[
float
]
=
[]
for
i
,
seq_group
in
enumerate
(
input_metadata
.
seq_groups
):
seq_ids
,
sampling_params
=
seq_group
temperature
=
sampling_params
.
temperature
if
temperature
<
_SAMPLING_EPS
:
# NOTE: Zero temperature means deterministic sampling
# (i.e., greedy sampling or beam search).
# Set the temperature to 1 to avoid division by zero.
temperature
=
1.0
if
(
i
<
input_metadata
.
num_prompts
and
sampling_params
.
prompt_logprobs
is
not
None
):
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
temperatures
+=
[
temperature
]
*
(
prompt_len
-
1
)
temperatures
+=
[
temperature
]
*
len
(
seq_ids
)
return
temperatures
def
_get_top_p_top_k
(
input_metadata
:
InputMetadata
,
vocab_size
:
int
,
)
->
Tuple
[
List
[
float
],
List
[
int
]]:
top_ps
:
List
[
float
]
=
[]
top_ks
:
List
[
int
]
=
[]
for
i
,
seq_group
in
enumerate
(
input_metadata
.
seq_groups
):
seq_ids
,
sampling_params
=
seq_group
top_p
=
sampling_params
.
top_p
# k should not be greater than the vocab size.
top_k
=
min
(
sampling_params
.
top_k
,
vocab_size
)
# k=-1 means no truncation.
top_k
=
vocab_size
if
top_k
==
-
1
else
top_k
if
(
i
<
input_metadata
.
num_prompts
and
sampling_params
.
prompt_logprobs
is
not
None
):
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
top_ps
+=
[
top_p
]
*
(
prompt_len
-
1
)
top_ks
+=
[
top_k
]
*
(
prompt_len
-
1
)
top_ps
+=
[
top_p
]
*
len
(
seq_ids
)
top_ks
+=
[
top_k
]
*
len
(
seq_ids
)
return
top_ps
,
top_ks
def
_apply_top_p_top_k
(
logits
:
torch
.
Tensor
,
top_ps
:
List
[
float
],
top_ks
:
List
[
int
],
)
->
torch
.
Tensor
:
p
=
torch
.
tensor
(
top_ps
,
dtype
=
logits
.
dtype
,
device
=
logits
.
device
)
k
=
torch
.
tensor
(
top_ks
,
dtype
=
torch
.
int
,
device
=
logits
.
device
)
logits_sort
,
logits_idx
=
logits
.
sort
(
dim
=-
1
,
descending
=
True
)
# Apply top-p.
probs_sort
=
logits_sort
.
softmax
(
dim
=-
1
)
probs_sum
=
probs_sort
.
cumsum
(
dim
=-
1
)
top_p_mask
=
(
probs_sum
-
probs_sort
)
>
p
.
unsqueeze
(
dim
=
1
)
logits_sort
[
top_p_mask
]
=
-
float
(
"inf"
)
# Apply top-k.
# Create a mask for the top-k elements.
top_k_mask
=
torch
.
arange
(
logits_idx
.
shape
[
-
1
],
device
=
logits_idx
.
device
)
top_k_mask
=
top_k_mask
.
expand
(
logits_idx
.
shape
[
0
],
-
1
)
top_k_mask
=
top_k_mask
>=
k
.
unsqueeze
(
dim
=
1
)
logits_sort
[
top_k_mask
]
=
-
float
(
"inf"
)
# Re-sort the probabilities.
logits
=
torch
.
gather
(
logits_sort
,
dim
=-
1
,
index
=
torch
.
argsort
(
logits_idx
,
dim
=-
1
))
return
logits
def
_greedy_sample
(
selected_seq_groups
:
List
[
Tuple
[
List
[
int
],
SamplingParams
]],
logprobs
:
torch
.
Tensor
,
)
->
List
[
Tuple
[
List
[
int
],
List
[
int
]]]:
samples
=
torch
.
argmax
(
logprobs
,
dim
=-
1
).
cpu
()
sample_idx
=
0
results
=
[]
for
seq_group
in
selected_seq_groups
:
seq_ids
,
_
=
seq_group
num_parent_seqs
=
len
(
seq_ids
)
assert
num_parent_seqs
==
1
,
(
"Greedy sampling should have only one seq."
)
parent_ids
=
list
(
range
(
num_parent_seqs
))
next_token_ids
=
[
samples
[
sample_idx
].
item
()]
results
.
append
((
next_token_ids
,
parent_ids
))
sample_idx
+=
num_parent_seqs
assert
sample_idx
==
logprobs
.
size
(
0
)
return
results
def
_random_sample
(
selected_seq_groups
:
List
[
Tuple
[
List
[
int
],
SamplingParams
]],
is_prompts
:
List
[
bool
],
probs
:
torch
.
Tensor
,
)
->
List
[
Tuple
[
List
[
int
],
List
[
int
]]]:
# Find the maximum best_of value of the prompt phase requests.
max_best_of
=
1
for
seq_group
,
is_prompt
in
zip
(
selected_seq_groups
,
is_prompts
):
if
is_prompt
:
seq_ids
,
sampling_params
=
seq_group
max_best_of
=
max
(
max_best_of
,
sampling_params
.
best_of
)
random_samples
=
torch
.
multinomial
(
probs
,
num_samples
=
max_best_of
,
replacement
=
True
).
cpu
()
sample_idx
=
0
results
=
[]
for
seq_group
,
is_prompt
in
zip
(
selected_seq_groups
,
is_prompts
):
seq_ids
,
sampling_params
=
seq_group
num_parent_seqs
=
len
(
seq_ids
)
if
is_prompt
:
# Prompt phase.
assert
num_parent_seqs
==
1
,
(
"Prompt input should have only one seq."
)
parent_ids
=
[
0
]
*
sampling_params
.
best_of
next_token_ids
=
random_samples
[
sample_idx
,
:
sampling_params
.
best_of
].
tolist
()
else
:
# Generation phase.
parent_ids
=
list
(
range
(
num_parent_seqs
))
next_token_ids
=
random_samples
[
sample_idx
:
sample_idx
+
num_parent_seqs
,
0
].
tolist
()
results
.
append
((
next_token_ids
,
parent_ids
))
sample_idx
+=
num_parent_seqs
assert
sample_idx
==
probs
.
size
(
0
)
return
results
def
_beam_search_sample
(
selected_seq_groups
:
List
[
Tuple
[
List
[
int
],
SamplingParams
]],
is_prompts
:
List
[
bool
],
seq_data
:
Dict
[
int
,
SequenceData
],
logprobs
:
torch
.
Tensor
,
)
->
List
[
Tuple
[
List
[
int
],
List
[
int
]]]:
# We sample 2 * beam_width candidates to make sure that with high
# probability we can get `beam_width` candidates in addition to
# the finished sequences for the next iteration. See
# https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563
# for details. See also HF reference:
# https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065
#
# NOTE: Beam search is not vectorized, so its speed can be slower than
# other sampling methods.
sample_idx
=
0
results
=
[]
for
seq_group
,
is_prompt
in
zip
(
selected_seq_groups
,
is_prompts
):
seq_ids
,
sampling_params
=
seq_group
num_parent_seqs
=
len
(
seq_ids
)
beam_width
=
sampling_params
.
best_of
seq_group_logprobs
=
logprobs
[
sample_idx
:
sample_idx
+
num_parent_seqs
]
if
is_prompt
:
# Prompt phase.
assert
num_parent_seqs
==
1
,
(
"Prompt input should have only one seq."
)
parent_ids
=
[
0
]
*
(
2
*
beam_width
)
_
,
next_token_ids
=
torch
.
topk
(
seq_group_logprobs
[
0
],
2
*
beam_width
)
next_token_ids
=
next_token_ids
.
tolist
()
else
:
# Generation phase.
cumulative_logprobs
=
[
seq_data
[
seq_id
].
cumulative_logprob
for
seq_id
in
seq_ids
]
cumulative_logprobs
=
torch
.
tensor
(
cumulative_logprobs
,
dtype
=
torch
.
float
,
device
=
seq_group_logprobs
.
device
)
seq_group_logprobs
=
(
seq_group_logprobs
+
cumulative_logprobs
.
unsqueeze
(
dim
=
1
))
_
,
topk_ids
=
torch
.
topk
(
seq_group_logprobs
.
flatten
(),
2
*
beam_width
)
topk_ids
=
topk_ids
.
tolist
()
vocab_size
=
seq_group_logprobs
.
size
(
-
1
)
parent_ids
=
[
i
//
vocab_size
for
i
in
topk_ids
]
next_token_ids
=
[
i
%
vocab_size
for
i
in
topk_ids
]
results
.
append
((
next_token_ids
,
parent_ids
))
sample_idx
+=
num_parent_seqs
assert
sample_idx
==
logprobs
.
size
(
0
)
return
results
def
_sample
(
probs
:
torch
.
Tensor
,
logprobs
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
)
->
List
[
Tuple
[
List
[
int
],
List
[
int
]]]:
categorized_seq_group_ids
=
{
t
:
[]
for
t
in
SamplingType
}
categorized_sample_indices
=
{
t
:
[]
for
t
in
SamplingType
}
start_idx
=
0
for
i
,
seq_group
in
enumerate
(
input_metadata
.
seq_groups
):
seq_ids
,
sampling_params
=
seq_group
sampling_type
=
sampling_params
.
sampling_type
if
(
i
<
input_metadata
.
num_prompts
and
sampling_params
.
prompt_logprobs
is
not
None
):
# NOTE: prompt token positions do not need sample, skip
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
start_idx
+=
prompt_len
-
1
categorized_seq_group_ids
[
sampling_type
].
append
(
i
)
num_seqs
=
len
(
seq_ids
)
categorized_sample_indices
[
sampling_type
].
extend
(
range
(
start_idx
,
start_idx
+
num_seqs
))
start_idx
+=
num_seqs
sample_results_dict
:
Dict
[
int
,
Tuple
[
List
[
int
],
List
[
int
]]]
=
{}
for
sampling_type
in
SamplingType
:
seq_group_ids
=
categorized_seq_group_ids
[
sampling_type
]
seq_groups
=
[
input_metadata
.
seq_groups
[
i
]
for
i
in
seq_group_ids
]
is_prompts
=
[
i
<
input_metadata
.
num_prompts
for
i
in
seq_group_ids
]
sample_indices
=
categorized_sample_indices
[
sampling_type
]
num_tokens
=
len
(
sample_indices
)
if
num_tokens
==
0
:
continue
if
sampling_type
==
SamplingType
.
GREEDY
:
category_logprobs
=
logprobs
[
sample_indices
]
sample_results
=
_greedy_sample
(
seq_groups
,
category_logprobs
)
elif
sampling_type
==
SamplingType
.
RANDOM
:
category_probs
=
probs
[
sample_indices
]
sample_results
=
_random_sample
(
seq_groups
,
is_prompts
,
category_probs
)
elif
sampling_type
==
SamplingType
.
BEAM
:
category_logprobs
=
logprobs
[
sample_indices
]
sample_results
=
_beam_search_sample
(
seq_groups
,
is_prompts
,
input_metadata
.
seq_data
,
category_logprobs
)
else
:
raise
ValueError
(
f
"Unsupported sampling type:
{
sampling_type
}
"
)
sample_results_dict
.
update
(
zip
(
seq_group_ids
,
sample_results
))
sample_results
=
[
sample_results_dict
[
i
]
for
i
in
range
(
len
(
input_metadata
.
seq_groups
))
]
return
sample_results
def
_get_logprobs
(
logprobs
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
sample_results
:
List
[
Tuple
[
List
[
int
],
List
[
int
]]],
)
->
Tuple
[
List
[
Optional
[
List
[
Optional
[
Dict
[
int
,
float
]]]]],
List
[
List
[
Dict
[
int
,
float
]]]]:
# Prepare query indices
batched_logprobs_query_seq_indices
:
List
[
int
]
=
[]
batched_logprobs_query_token_indices
:
List
[
int
]
=
[]
largest_num_logprobs
=
0
sample_idx
=
0
for
i
,
(
seq_group
,
sample_result
)
in
enumerate
(
zip
(
input_metadata
.
seq_groups
,
sample_results
)):
seq_ids
,
sampling_params
=
seq_group
next_token_ids
,
parent_ids
=
sample_result
num_parent_seqs
=
len
(
seq_ids
)
if
(
i
<
input_metadata
.
num_prompts
and
sampling_params
.
prompt_logprobs
is
not
None
):
largest_num_logprobs
=
max
(
largest_num_logprobs
,
sampling_params
.
prompt_logprobs
)
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
prompt_tokens
=
input_metadata
.
seq_data
[
seq_ids
[
0
]].
prompt_token_ids
batched_logprobs_query_seq_indices
.
extend
(
sample_idx
+
j
for
j
in
range
(
prompt_len
-
1
))
batched_logprobs_query_token_indices
.
extend
(
token_id
for
token_id
in
prompt_tokens
[
1
:])
sample_idx
+=
prompt_len
-
1
batched_logprobs_query_seq_indices
.
extend
(
[
sample_idx
+
parent_id
for
parent_id
in
parent_ids
])
batched_logprobs_query_token_indices
.
extend
(
next_token_ids
)
if
sampling_params
.
logprobs
is
not
None
:
largest_num_logprobs
=
max
(
largest_num_logprobs
,
sampling_params
.
logprobs
)
sample_idx
+=
num_parent_seqs
assert
sample_idx
==
logprobs
.
size
(
0
)
# Batched query for logprobs of selected token
batched_logprobs_query_result
=
logprobs
[[
batched_logprobs_query_seq_indices
,
batched_logprobs_query_token_indices
]].
cpu
()
# Batched query for logprobs of topk tokens
if
largest_num_logprobs
>
0
:
top_logprobs
,
top_token_ids
=
torch
.
topk
(
logprobs
,
largest_num_logprobs
,
dim
=-
1
)
top_logprobs
=
top_logprobs
.
cpu
()
top_token_ids
=
top_token_ids
.
cpu
()
else
:
top_logprobs
,
top_token_ids
=
None
,
None
# Gather results
result_prompt_logprobs
:
List
[
Optional
[
PromptLogprobs
]]
=
[]
result_sample_logprobs
:
List
[
SampleLogprobs
]
=
[]
sample_idx
=
0
query_result_idx
=
0
for
i
,
(
seq_group
,
sample_result
)
in
enumerate
(
zip
(
input_metadata
.
seq_groups
,
sample_results
)):
seq_ids
,
sampling_params
=
seq_group
next_token_ids
,
parent_ids
=
sample_result
# Prompt logprobs
if
(
i
<
input_metadata
.
num_prompts
and
sampling_params
.
prompt_logprobs
is
not
None
):
num_logprobs
=
sampling_params
.
prompt_logprobs
prompt_len
=
input_metadata
.
prompt_lens
[
i
]
prompt_tokens
=
input_metadata
.
seq_data
[
seq_ids
[
0
]].
prompt_token_ids
group_prompt_logprobs
:
PromptLogprobs
=
[
None
]
for
token_id
in
prompt_tokens
[
1
:]:
prompt_logprobs_dict
=
{
token_id
:
batched_logprobs_query_result
[
query_result_idx
].
item
()
}
if
num_logprobs
>
0
:
prompt_logprobs_dict
.
update
(
zip
(
top_token_ids
[
sample_idx
,
:
num_logprobs
].
tolist
(),
top_logprobs
[
sample_idx
,
:
num_logprobs
].
tolist
()))
group_prompt_logprobs
.
append
(
prompt_logprobs_dict
)
sample_idx
+=
1
query_result_idx
+=
1
result_prompt_logprobs
.
append
(
group_prompt_logprobs
)
else
:
result_prompt_logprobs
.
append
(
None
)
# Sample logprobs
num_logprobs
=
sampling_params
.
logprobs
if
num_logprobs
is
None
:
num_logprobs
=
0
group_sample_logprobs
:
SampleLogprobs
=
[]
for
next_token_id
,
parent_id
in
zip
(
next_token_ids
,
parent_ids
):
sample_logprobs_dict
=
{
next_token_id
:
batched_logprobs_query_result
[
query_result_idx
].
item
()
}
query_result_idx
+=
1
if
num_logprobs
>
0
:
sample_logprobs_dict
.
update
(
zip
(
top_token_ids
[
sample_idx
+
parent_id
,
:
num_logprobs
].
tolist
(),
top_logprobs
[
sample_idx
+
parent_id
,
:
num_logprobs
].
tolist
()))
group_sample_logprobs
.
append
(
sample_logprobs_dict
)
result_sample_logprobs
.
append
(
group_sample_logprobs
)
sample_idx
+=
len
(
seq_ids
)
return
result_prompt_logprobs
,
result_sample_logprobs
def
_build_sampler_output
(
sample_results
:
List
[
Tuple
[
List
[
int
],
List
[
int
]]],
input_metadata
:
InputMetadata
,
prompt_logprobs
:
List
[
Optional
[
PromptLogprobs
]],
sample_logprobs
:
List
[
SampleLogprobs
],
)
->
SamplerOutput
:
sampler_output
=
[]
for
(
seq_group
,
sample_result
,
group_prompt_logprobs
,
group_sample_logprobs
)
in
zip
(
input_metadata
.
seq_groups
,
sample_results
,
prompt_logprobs
,
sample_logprobs
):
seq_ids
,
_
=
seq_group
next_token_ids
,
parent_ids
=
sample_result
seq_outputs
=
[]
for
parent_id
,
next_token_id
,
logprobs
in
zip
(
parent_ids
,
next_token_ids
,
group_sample_logprobs
):
seq_outputs
.
append
(
SequenceOutputs
(
seq_ids
[
parent_id
],
next_token_id
,
logprobs
))
sampler_output
.
append
(
SequenceGroupOutputs
(
seq_outputs
,
group_prompt_logprobs
))
return
sampler_output
server/vllm/vllm/model_executor/model_loader.py
0 → 100644
View file @
70056d1e
"""Utilities for selecting and loading models."""
import
contextlib
from
typing
import
Type
import
torch
import
torch.nn
as
nn
from
transformers
import
PretrainedConfig
from
vllm.config
import
ModelConfig
from
vllm.model_executor.models
import
*
# pylint: disable=wildcard-import
from
vllm.model_executor.weight_utils
import
(
get_quant_config
,
initialize_dummy_weights
)
# TODO(woosuk): Lazy-load the model classes.
_MODEL_REGISTRY
=
{
"AquilaModel"
:
AquilaForCausalLM
,
"AquilaForCausalLM"
:
AquilaForCausalLM
,
# AquilaChat2
"BaiChuanForCausalLM"
:
BaiChuanForCausalLM
,
# baichuan-7b
"BaichuanForCausalLM"
:
BaichuanForCausalLM
,
# baichuan-13b
"BloomForCausalLM"
:
BloomForCausalLM
,
"FalconForCausalLM"
:
FalconForCausalLM
,
"GPT2LMHeadModel"
:
GPT2LMHeadModel
,
"GPTBigCodeForCausalLM"
:
GPTBigCodeForCausalLM
,
"GPTJForCausalLM"
:
GPTJForCausalLM
,
"GPTNeoXForCausalLM"
:
GPTNeoXForCausalLM
,
"InternLMForCausalLM"
:
InternLMForCausalLM
,
"LlamaForCausalLM"
:
LlamaForCausalLM
,
"LLaMAForCausalLM"
:
LlamaForCausalLM
,
# For decapoda-research/llama-*
# "MistralForCausalLM": MistralForCausalLM,
"MPTForCausalLM"
:
MPTForCausalLM
,
"OPTForCausalLM"
:
OPTForCausalLM
,
"QWenLMHeadModel"
:
QWenLMHeadModel
,
"RWForCausalLM"
:
FalconForCausalLM
,
}
# FIXME(woosuk): Remove this once all models support quantization.
_MODEL_CLASSES_SUPPORT_QUANTIZATION
=
[
LlamaForCausalLM
,
# MistralForCausalLM,
]
@
contextlib
.
contextmanager
def
_set_default_torch_dtype
(
dtype
:
torch
.
dtype
):
"""Sets the default torch dtype to the given dtype."""
old_dtype
=
torch
.
get_default_dtype
()
torch
.
set_default_dtype
(
dtype
)
yield
torch
.
set_default_dtype
(
old_dtype
)
def
_get_model_architecture
(
config
:
PretrainedConfig
)
->
Type
[
nn
.
Module
]:
architectures
=
getattr
(
config
,
"architectures"
,
[])
for
arch
in
architectures
:
if
arch
in
_MODEL_REGISTRY
:
return
_MODEL_REGISTRY
[
arch
]
raise
ValueError
(
f
"Model architectures
{
architectures
}
are not supported for now. "
f
"Supported architectures:
{
list
(
_MODEL_REGISTRY
.
keys
())
}
"
)
def
get_model
(
model_config
:
ModelConfig
)
->
nn
.
Module
:
model_class
=
_get_model_architecture
(
model_config
.
hf_config
)
# Get the quantization config.
quant_config
=
None
if
model_config
.
quantization
is
not
None
:
if
model_class
not
in
_MODEL_CLASSES_SUPPORT_QUANTIZATION
:
raise
ValueError
(
f
"Quantization is not supported for
{
model_class
}
."
)
quant_config
=
get_quant_config
(
model_config
.
quantization
,
model_config
.
model
,
model_config
.
download_dir
)
capability
=
torch
.
cuda
.
get_device_capability
()
capability
=
capability
[
0
]
*
10
+
capability
[
1
]
if
capability
<
quant_config
.
get_min_capability
():
raise
ValueError
(
f
"The quantization method
{
model_config
.
quantization
}
is not "
"supported for the current GPU. "
f
"Minimum capability:
{
quant_config
.
get_min_capability
()
}
. "
f
"Current capability:
{
capability
}
."
)
supported_dtypes
=
quant_config
.
get_supported_act_dtypes
()
if
model_config
.
dtype
not
in
supported_dtypes
:
raise
ValueError
(
f
"
{
model_config
.
dtype
}
is not supported for quantization "
f
"method
{
model_config
.
quantization
}
. Supported dtypes: "
f
"
{
supported_dtypes
}
"
)
with
_set_default_torch_dtype
(
model_config
.
dtype
):
# Create a model instance.
# The weights will be initialized as empty tensors.
if
model_class
in
_MODEL_CLASSES_SUPPORT_QUANTIZATION
:
model
=
model_class
(
model_config
.
hf_config
,
quant_config
)
else
:
model
=
model_class
(
model_config
.
hf_config
)
if
model_config
.
load_format
==
"dummy"
:
model
=
model
.
cuda
()
# NOTE(woosuk): For accurate performance evaluation, we assign
# random values to the weights.
initialize_dummy_weights
(
model
)
else
:
# Load the weights from the cached or downloaded files.
model
.
load_weights
(
model_config
.
model
,
model_config
.
download_dir
,
model_config
.
load_format
,
model_config
.
revision
)
model
=
model
.
cuda
()
return
model
.
eval
()
server/vllm/vllm/model_executor/models/__init__.py
0 → 100644
View file @
70056d1e
from
vllm.model_executor.models.aquila
import
AquilaForCausalLM
from
vllm.model_executor.models.baichuan
import
(
BaiChuanForCausalLM
,
BaichuanForCausalLM
)
from
vllm.model_executor.models.bloom
import
BloomForCausalLM
from
vllm.model_executor.models.falcon
import
FalconForCausalLM
from
vllm.model_executor.models.gpt2
import
GPT2LMHeadModel
from
vllm.model_executor.models.gpt_bigcode
import
GPTBigCodeForCausalLM
from
vllm.model_executor.models.gpt_j
import
GPTJForCausalLM
from
vllm.model_executor.models.gpt_neox
import
GPTNeoXForCausalLM
from
vllm.model_executor.models.internlm
import
InternLMForCausalLM
from
vllm.model_executor.models.llama
import
LlamaForCausalLM
# from vllm.model_executor.models.mistral import MistralForCausalLM
from
vllm.model_executor.models.mpt
import
MPTForCausalLM
from
vllm.model_executor.models.opt
import
OPTForCausalLM
from
vllm.model_executor.models.qwen
import
QWenLMHeadModel
__all__
=
[
"AquilaForCausalLM"
,
"BaiChuanForCausalLM"
,
"BaichuanForCausalLM"
,
"BloomForCausalLM"
,
"FalconForCausalLM"
,
"GPT2LMHeadModel"
,
"GPTBigCodeForCausalLM"
,
"GPTJForCausalLM"
,
"GPTNeoXForCausalLM"
,
"InternLMForCausalLM"
,
"LlamaForCausalLM"
,
"MPTForCausalLM"
,
"OPTForCausalLM"
,
"QWenLMHeadModel"
,
# "MistralForCausalLM",
]
server/vllm/vllm/model_executor/models/aquila.py
0 → 100644
View file @
70056d1e
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only LLaMA model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from
typing
import
List
,
Optional
,
Tuple
import
torch
from
torch
import
nn
from
vllm.model_executor.input_metadata
import
InputMetadata
from
vllm.model_executor.layers.activation
import
SiluAndMul
from
vllm.model_executor.layers.attention
import
PagedAttentionWithRoPE
from
vllm.model_executor.layers.sampler
import
Sampler
from
vllm.model_executor.weight_utils
import
(
hf_model_weights_iterator
,
load_padded_tensor_parallel_vocab
,
load_tensor_parallel_weights
)
from
vllm.model_executor.parallel_utils.parallel_state
import
(
get_tensor_model_parallel_rank
,
get_tensor_model_parallel_world_size
)
from
vllm.model_executor.parallel_utils.layers
import
(
VocabParallelEmbedding
,
ColumnParallelLinear
,
RowParallelLinear
)
from
vllm.sequence
import
SamplerOutput
from
vllm.transformers_utils.configs.aquila
import
AquilaConfig
KVCache
=
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]
class
AquilaMLP
(
nn
.
Module
):
def
__init__
(
self
,
hidden_size
:
int
,
intermediate_size
:
int
,
hidden_act
:
str
,
):
super
().
__init__
()
self
.
gate_up_proj
=
ColumnParallelLinear
(
hidden_size
,
2
*
intermediate_size
,
bias
=
False
,
gather_output
=
False
,
)
self
.
down_proj
=
RowParallelLinear
(
intermediate_size
,
hidden_size
,
bias
=
False
,
input_is_parallel
=
True
,
)
if
hidden_act
!=
"silu"
:
raise
ValueError
(
f
"Unsupported activation:
{
hidden_act
}
. "
"Only silu is supported for now."
)
self
.
act_fn
=
SiluAndMul
()
def
forward
(
self
,
x
):
gate_up
,
_
=
self
.
gate_up_proj
(
x
)
x
=
self
.
act_fn
(
gate_up
)
x
,
_
=
self
.
down_proj
(
x
)
return
x
class
AquilaRMSNorm
(
nn
.
Module
):
def
__init__
(
self
,
hidden_size
,
eps
=
1e-6
):
"""
AquilaRMSNorm is equivalent to T5LayerNorm
"""
super
().
__init__
()
self
.
weight
=
nn
.
Parameter
(
torch
.
ones
(
hidden_size
))
self
.
variance_epsilon
=
eps
def
forward
(
self
,
hidden_states
):
input_dtype
=
hidden_states
.
dtype
variance
=
hidden_states
.
to
(
torch
.
float32
).
pow
(
2
).
mean
(
-
1
,
keepdim
=
True
)
hidden_states
=
hidden_states
*
torch
.
rsqrt
(
variance
+
self
.
variance_epsilon
)
return
(
self
.
weight
*
hidden_states
).
to
(
input_dtype
)
class
AquilaAttention
(
nn
.
Module
):
def
__init__
(
self
,
hidden_size
:
int
,
num_heads
:
int
,
num_kv_heads
:
int
,
rope_theta
:
float
=
10000
,
max_position_embeddings
:
int
=
8192
,
):
super
().
__init__
()
self
.
hidden_size
=
hidden_size
tp_size
=
get_tensor_model_parallel_world_size
()
self
.
total_num_heads
=
num_heads
assert
self
.
total_num_heads
%
tp_size
==
0
self
.
num_heads
=
self
.
total_num_heads
//
tp_size
self
.
total_num_kv_heads
=
num_kv_heads
assert
self
.
total_num_kv_heads
%
tp_size
==
0
self
.
num_kv_heads
=
self
.
total_num_kv_heads
//
tp_size
self
.
head_dim
=
hidden_size
//
self
.
total_num_heads
self
.
q_size
=
self
.
num_heads
*
self
.
head_dim
self
.
kv_size
=
self
.
num_kv_heads
*
self
.
head_dim
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
rope_theta
=
rope_theta
self
.
max_position_embeddings
=
max_position_embeddings
self
.
qkv_proj
=
ColumnParallelLinear
(
hidden_size
,
(
self
.
total_num_heads
+
2
*
self
.
total_num_kv_heads
)
*
self
.
head_dim
,
bias
=
False
,
gather_output
=
False
,
)
self
.
o_proj
=
RowParallelLinear
(
self
.
total_num_heads
*
self
.
head_dim
,
hidden_size
,
bias
=
False
,
input_is_parallel
=
True
,
)
self
.
attn
=
PagedAttentionWithRoPE
(
self
.
num_heads
,
self
.
head_dim
,
self
.
scaling
,
rotary_dim
=
self
.
head_dim
,
base
=
self
.
rope_theta
,
max_position
=
self
.
max_position_embeddings
,
num_kv_heads
=
self
.
num_kv_heads
,
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
kv_cache
:
KVCache
,
input_metadata
:
InputMetadata
,
cache_event
:
Optional
[
torch
.
cuda
.
Event
],
)
->
torch
.
Tensor
:
qkv
,
_
=
self
.
qkv_proj
(
hidden_states
)
q
,
k
,
v
=
qkv
.
split
([
self
.
q_size
,
self
.
kv_size
,
self
.
kv_size
],
dim
=-
1
)
k_cache
,
v_cache
=
kv_cache
attn_output
=
self
.
attn
(
positions
,
q
,
k
,
v
,
k_cache
,
v_cache
,
input_metadata
,
cache_event
)
output
,
_
=
self
.
o_proj
(
attn_output
)
return
output
class
AquilaDecoderLayer
(
nn
.
Module
):
def
__init__
(
self
,
config
:
AquilaConfig
):
super
().
__init__
()
self
.
hidden_size
=
config
.
hidden_size
rope_theta
=
getattr
(
config
,
"rope_theta"
,
10000
)
max_position_embeddings
=
getattr
(
config
,
"max_position_embeddings"
,
8192
)
self
.
self_attn
=
AquilaAttention
(
hidden_size
=
self
.
hidden_size
,
num_heads
=
config
.
num_attention_heads
,
num_kv_heads
=
config
.
num_key_value_heads
,
rope_theta
=
rope_theta
,
max_position_embeddings
=
max_position_embeddings
,
)
self
.
mlp
=
AquilaMLP
(
hidden_size
=
self
.
hidden_size
,
intermediate_size
=
config
.
intermediate_size
,
hidden_act
=
config
.
hidden_act
,
)
self
.
input_layernorm
=
AquilaRMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
post_attention_layernorm
=
AquilaRMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
kv_cache
:
KVCache
,
input_metadata
:
InputMetadata
,
cache_event
:
Optional
[
torch
.
cuda
.
Event
],
)
->
torch
.
Tensor
:
# Self Attention
residual
=
hidden_states
hidden_states
=
self
.
input_layernorm
(
hidden_states
)
hidden_states
=
self
.
self_attn
(
positions
=
positions
,
hidden_states
=
hidden_states
,
kv_cache
=
kv_cache
,
input_metadata
=
input_metadata
,
cache_event
=
cache_event
,
)
hidden_states
=
residual
+
hidden_states
# Fully Connected
residual
=
hidden_states
hidden_states
=
self
.
post_attention_layernorm
(
hidden_states
)
hidden_states
=
self
.
mlp
(
hidden_states
)
hidden_states
=
residual
+
hidden_states
return
hidden_states
class
AquilaModel
(
nn
.
Module
):
def
__init__
(
self
,
config
:
AquilaConfig
):
super
().
__init__
()
self
.
config
=
config
self
.
padding_idx
=
config
.
pad_token_id
self
.
vocab_size
=
config
.
vocab_size
#vocab_size = ((config.vocab_size + 63) // 64) * 64
self
.
embed_tokens
=
VocabParallelEmbedding
(
config
.
vocab_size
,
config
.
hidden_size
,
)
self
.
layers
=
nn
.
ModuleList
([
AquilaDecoderLayer
(
config
)
for
_
in
range
(
config
.
num_hidden_layers
)
])
self
.
norm
=
AquilaRMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
kv_caches
:
List
[
KVCache
],
input_metadata
:
InputMetadata
,
cache_events
:
Optional
[
List
[
torch
.
cuda
.
Event
]],
)
->
torch
.
Tensor
:
hidden_states
=
self
.
embed_tokens
(
input_ids
)
for
i
in
range
(
len
(
self
.
layers
)):
if
cache_events
is
None
:
cache_event
=
None
else
:
cache_event
=
cache_events
[
i
]
layer
=
self
.
layers
[
i
]
hidden_states
=
layer
(
positions
,
hidden_states
,
kv_caches
[
i
],
input_metadata
,
cache_event
,
)
hidden_states
=
self
.
norm
(
hidden_states
)
return
hidden_states
class
AquilaForCausalLM
(
nn
.
Module
):
def
__init__
(
self
,
config
):
super
().
__init__
()
self
.
config
=
config
self
.
model
=
AquilaModel
(
config
)
vocab_size
=
((
config
.
vocab_size
+
63
)
//
64
)
*
64
self
.
lm_head
=
ColumnParallelLinear
(
config
.
hidden_size
,
vocab_size
,
bias
=
False
,
gather_output
=
False
,
)
self
.
sampler
=
Sampler
(
config
.
vocab_size
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
kv_caches
:
List
[
KVCache
],
input_metadata
:
InputMetadata
,
cache_events
:
Optional
[
List
[
torch
.
cuda
.
Event
]],
)
->
SamplerOutput
:
hidden_states
=
self
.
model
(
input_ids
,
positions
,
kv_caches
,
input_metadata
,
cache_events
)
next_tokens
=
self
.
sampler
(
self
.
lm_head
.
weight
,
hidden_states
,
input_metadata
)
return
next_tokens
_column_parallel_weights
=
[
"qkv_proj.weight"
,
"gate_proj.weight"
,
"up_proj.weight"
]
_row_parallel_weights
=
[
"o_proj.weight"
,
"down_proj.weight"
]
def
load_weights
(
self
,
model_name_or_path
:
str
,
cache_dir
:
Optional
[
str
]
=
None
,
load_format
:
str
=
"auto"
,
revision
:
Optional
[
str
]
=
None
):
tp_size
=
get_tensor_model_parallel_world_size
()
tensor_model_parallel_rank
=
get_tensor_model_parallel_rank
()
q_proj_shard_size
=
(
self
.
config
.
hidden_size
//
tp_size
)
kv_proj_shard_size
=
(
self
.
config
.
hidden_size
//
self
.
config
.
num_attention_heads
*
self
.
config
.
num_key_value_heads
//
tp_size
)
attention_weight_specs
=
[
# (weight_name, shard_size, offset)
(
"q_proj"
,
q_proj_shard_size
,
0
),
(
"k_proj"
,
kv_proj_shard_size
,
q_proj_shard_size
),
(
"v_proj"
,
kv_proj_shard_size
,
q_proj_shard_size
+
kv_proj_shard_size
),
]
state_dict
=
self
.
state_dict
()
for
name
,
loaded_weight
in
hf_model_weights_iterator
(
model_name_or_path
,
cache_dir
,
load_format
,
revision
):
if
"rotary_emb.inv_freq"
in
name
:
continue
is_attention_weight
=
False
for
weight_name
,
shard_size
,
offset
in
attention_weight_specs
:
if
weight_name
not
in
name
:
continue
param
=
state_dict
[
name
.
replace
(
weight_name
,
"qkv_proj"
)]
loaded_weight
=
loaded_weight
[
shard_size
*
tensor_model_parallel_rank
:
shard_size
*
(
tensor_model_parallel_rank
+
1
)]
param_slice
=
param
.
data
[
offset
:
offset
+
shard_size
]
assert
param_slice
.
shape
==
loaded_weight
.
shape
param_slice
.
copy_
(
loaded_weight
)
is_attention_weight
=
True
break
if
is_attention_weight
:
continue
is_gate_up_weight
=
False
for
stride_id
,
weight_name
in
enumerate
([
"gate_proj"
,
"up_proj"
]):
if
weight_name
not
in
name
:
continue
param
=
state_dict
[
name
.
replace
(
weight_name
,
"gate_up_proj"
)]
shard_size
=
param
.
shape
[
0
]
//
2
loaded_weight
=
loaded_weight
[
shard_size
*
tensor_model_parallel_rank
:
shard_size
*
(
tensor_model_parallel_rank
+
1
)]
param_slice
=
param
.
data
[
shard_size
*
stride_id
:
shard_size
*
(
stride_id
+
1
)]
assert
param_slice
.
shape
==
loaded_weight
.
shape
param_slice
.
copy_
(
loaded_weight
)
is_gate_up_weight
=
True
break
if
is_gate_up_weight
:
continue
param
=
state_dict
[
name
]
if
"embed_tokens"
in
name
or
"lm_head"
in
name
:
load_padded_tensor_parallel_vocab
(
param
,
loaded_weight
,
tensor_model_parallel_rank
)
continue
load_tensor_parallel_weights
(
param
,
loaded_weight
,
name
,
self
.
_column_parallel_weights
,
self
.
_row_parallel_weights
,
tensor_model_parallel_rank
)
server/vllm/vllm/model_executor/models/baichuan.py
0 → 100644
View file @
70056d1e
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only BaiChuan model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
import
math
from
typing
import
List
,
Optional
,
Tuple
import
torch
from
torch
import
nn
from
vllm.model_executor.input_metadata
import
InputMetadata
from
vllm.model_executor.layers.activation
import
SiluAndMul
from
vllm.model_executor.layers.layernorm
import
RMSNorm
from
vllm.model_executor.layers.attention
import
(
PagedAttentionWithRoPE
,
PagedAttentionWithALiBi
)
from
vllm.model_executor.layers.sampler
import
Sampler
from
vllm.model_executor.weight_utils
import
(
convert_pyslice_to_tensor
,
hf_model_weights_iterator
,
load_padded_tensor_parallel_vocab
,
load_tensor_parallel_weights
)
from
vllm.model_executor.parallel_utils.parallel_state
import
(
get_tensor_model_parallel_rank
,
get_tensor_model_parallel_world_size
)
from
vllm.model_executor.parallel_utils.layers
import
(
VocabParallelEmbedding
,
ColumnParallelLinear
,
RowParallelLinear
)
from
vllm.sequence
import
SamplerOutput
from
vllm.transformers_utils.configs.baichuan
import
BaiChuanConfig
KVCache
=
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]
def
_get_alibi_slopes
(
total_num_heads
:
int
)
->
torch
.
Tensor
:
closest_power_of_2
=
2
**
math
.
floor
(
math
.
log2
(
total_num_heads
))
base
=
torch
.
tensor
(
2
**
(
-
(
2
**-
(
math
.
log2
(
closest_power_of_2
)
-
3
))),
dtype
=
torch
.
float32
,
)
powers
=
torch
.
arange
(
1
,
1
+
closest_power_of_2
,
dtype
=
torch
.
int32
)
slopes
=
torch
.
pow
(
base
,
powers
)
if
closest_power_of_2
!=
total_num_heads
:
extra_base
=
torch
.
tensor
(
2
**
(
-
(
2
**-
(
math
.
log2
(
2
*
closest_power_of_2
)
-
3
))),
dtype
=
torch
.
float32
,
)
num_remaining_heads
=
min
(
closest_power_of_2
,
total_num_heads
-
closest_power_of_2
)
extra_powers
=
torch
.
arange
(
start
=
1
,
end
=
1
+
2
*
num_remaining_heads
,
step
=
2
,
dtype
=
torch
.
int32
)
slopes
=
torch
.
cat
(
[
slopes
,
torch
.
pow
(
extra_base
,
extra_powers
)],
dim
=
0
)
return
slopes
class
BaiChuanMLP
(
nn
.
Module
):
def
__init__
(
self
,
hidden_size
:
int
,
intermediate_size
:
int
,
hidden_act
:
str
,
):
super
().
__init__
()
self
.
gate_up_proj
=
ColumnParallelLinear
(
hidden_size
,
2
*
intermediate_size
,
bias
=
False
,
gather_output
=
False
,
)
self
.
down_proj
=
RowParallelLinear
(
intermediate_size
,
hidden_size
,
bias
=
False
,
input_is_parallel
=
True
,
)
if
hidden_act
!=
"silu"
:
raise
ValueError
(
f
"Unsupported activation:
{
hidden_act
}
. "
"Only silu is supported for now."
)
self
.
act_fn
=
SiluAndMul
()
def
forward
(
self
,
x
):
gate_up
,
_
=
self
.
gate_up_proj
(
x
)
x
=
self
.
act_fn
(
gate_up
)
x
,
_
=
self
.
down_proj
(
x
)
return
x
class
BaiChuanAttention
(
nn
.
Module
):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def
__init__
(
self
,
hidden_size
:
int
,
num_heads
:
int
,
position_embedding
:
str
,
rope_theta
:
float
=
10000
,
max_position_embeddings
:
int
=
8192
,
):
super
().
__init__
()
self
.
hidden_size
=
hidden_size
tensor_model_parallel_world_size
=
get_tensor_model_parallel_world_size
(
)
self
.
total_num_heads
=
num_heads
assert
self
.
total_num_heads
%
tensor_model_parallel_world_size
==
0
self
.
num_heads
=
(
self
.
total_num_heads
//
tensor_model_parallel_world_size
)
self
.
head_dim
=
hidden_size
//
self
.
total_num_heads
self
.
postion_embedding
=
position_embedding
self
.
rope_theta
=
rope_theta
self
.
max_position_embeddings
=
max_position_embeddings
# pylint: disable=invalid-name
self
.
W_pack
=
ColumnParallelLinear
(
hidden_size
,
3
*
hidden_size
,
bias
=
False
,
gather_output
=
False
,
)
self
.
o_proj
=
RowParallelLinear
(
self
.
total_num_heads
*
self
.
head_dim
,
hidden_size
,
bias
=
False
,
input_is_parallel
=
True
,
)
# Create the alibi slopes and slice them.
if
self
.
postion_embedding
==
"ALIBI"
:
tp_rank
=
get_tensor_model_parallel_rank
()
head_start
=
tp_rank
*
self
.
num_heads
head_end
=
(
tp_rank
+
1
)
*
self
.
num_heads
alibi_slopes
=
_get_alibi_slopes
(
self
.
total_num_heads
)
alibi_slopes
=
alibi_slopes
[
head_start
:
head_end
].
tolist
()
scaling
=
self
.
head_dim
**-
0.5
self
.
attn
=
PagedAttentionWithALiBi
(
self
.
num_heads
,
self
.
head_dim
,
scaling
,
alibi_slopes
)
else
:
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
attn
=
PagedAttentionWithRoPE
(
self
.
num_heads
,
self
.
head_dim
,
self
.
scaling
,
rotary_dim
=
self
.
head_dim
,
base
=
self
.
rope_theta
,
max_position
=
self
.
max_position_embeddings
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
kv_cache
:
KVCache
,
input_metadata
:
InputMetadata
,
cache_event
:
Optional
[
torch
.
cuda
.
Event
],
)
->
torch
.
Tensor
:
qkv
,
_
=
self
.
W_pack
(
hidden_states
)
q
,
k
,
v
=
qkv
.
chunk
(
chunks
=
3
,
dim
=-
1
)
k_cache
,
v_cache
=
kv_cache
if
self
.
postion_embedding
==
"ALIBI"
:
attn_output
=
self
.
attn
(
q
,
k
,
v
,
k_cache
,
v_cache
,
input_metadata
,
cache_event
)
else
:
attn_output
=
self
.
attn
(
positions
,
q
,
k
,
v
,
k_cache
,
v_cache
,
input_metadata
,
cache_event
)
output
,
_
=
self
.
o_proj
(
attn_output
)
return
output
class
BaiChuanDecoderLayer
(
nn
.
Module
):
def
__init__
(
self
,
config
:
BaiChuanConfig
,
position_embedding
:
str
):
super
().
__init__
()
self
.
hidden_size
=
config
.
hidden_size
rope_theta
=
getattr
(
config
,
"rope_theta"
,
10000
)
max_position_embeddings
=
getattr
(
config
,
"max_position_embeddings"
,
8192
)
self
.
self_attn
=
BaiChuanAttention
(
hidden_size
=
self
.
hidden_size
,
num_heads
=
config
.
num_attention_heads
,
position_embedding
=
position_embedding
,
rope_theta
=
rope_theta
,
max_position_embeddings
=
max_position_embeddings
,
)
self
.
mlp
=
BaiChuanMLP
(
hidden_size
=
self
.
hidden_size
,
intermediate_size
=
config
.
intermediate_size
,
hidden_act
=
config
.
hidden_act
,
)
self
.
input_layernorm
=
RMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
post_attention_layernorm
=
RMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
kv_cache
:
KVCache
,
input_metadata
:
InputMetadata
,
cache_event
:
Optional
[
torch
.
cuda
.
Event
],
)
->
torch
.
Tensor
:
# Self Attention
residual
=
hidden_states
hidden_states
=
self
.
input_layernorm
(
hidden_states
)
hidden_states
=
self
.
self_attn
(
positions
=
positions
,
hidden_states
=
hidden_states
,
kv_cache
=
kv_cache
,
input_metadata
=
input_metadata
,
cache_event
=
cache_event
,
)
hidden_states
=
residual
+
hidden_states
# Fully Connected
residual
=
hidden_states
hidden_states
=
self
.
post_attention_layernorm
(
hidden_states
)
hidden_states
=
self
.
mlp
(
hidden_states
)
hidden_states
=
residual
+
hidden_states
return
hidden_states
class
BaiChuanModel
(
nn
.
Module
):
def
__init__
(
self
,
config
:
BaiChuanConfig
,
position_embedding
:
str
):
super
().
__init__
()
self
.
config
=
config
self
.
padding_idx
=
config
.
pad_token_id
self
.
vocab_size
=
config
.
vocab_size
self
.
embed_tokens
=
VocabParallelEmbedding
(
config
.
vocab_size
,
config
.
hidden_size
,
)
self
.
layers
=
nn
.
ModuleList
([
BaiChuanDecoderLayer
(
config
,
position_embedding
)
for
_
in
range
(
config
.
num_hidden_layers
)
])
self
.
norm
=
RMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
kv_caches
:
List
[
KVCache
],
input_metadata
:
InputMetadata
,
cache_events
:
Optional
[
List
[
torch
.
cuda
.
Event
]],
)
->
torch
.
Tensor
:
hidden_states
=
self
.
embed_tokens
(
input_ids
)
for
i
in
range
(
len
(
self
.
layers
)):
if
cache_events
is
None
:
cache_event
=
None
else
:
cache_event
=
cache_events
[
i
]
layer
=
self
.
layers
[
i
]
hidden_states
=
layer
(
positions
,
hidden_states
,
kv_caches
[
i
],
input_metadata
,
cache_event
,
)
hidden_states
=
self
.
norm
(
hidden_states
)
return
hidden_states
class
BaiChuanBaseForCausalLM
(
nn
.
Module
):
def
__init__
(
self
,
config
,
position_embedding
:
str
):
super
().
__init__
()
self
.
config
=
config
self
.
model
=
BaiChuanModel
(
config
,
position_embedding
)
self
.
lm_head
=
ColumnParallelLinear
(
config
.
hidden_size
,
config
.
vocab_size
,
bias
=
False
,
gather_output
=
False
,
)
self
.
sampler
=
Sampler
(
config
.
vocab_size
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
kv_caches
:
List
[
KVCache
],
input_metadata
:
InputMetadata
,
cache_events
:
Optional
[
List
[
torch
.
cuda
.
Event
]],
)
->
SamplerOutput
:
hidden_states
=
self
.
model
(
input_ids
,
positions
,
kv_caches
,
input_metadata
,
cache_events
)
next_tokens
=
self
.
sampler
(
self
.
lm_head
.
weight
,
hidden_states
,
input_metadata
)
return
next_tokens
_column_parallel_weights
=
[]
_row_parallel_weights
=
[
"o_proj.weight"
,
"down_proj.weight"
]
def
load_weights
(
self
,
model_name_or_path
:
str
,
cache_dir
:
Optional
[
str
]
=
None
,
load_format
:
str
=
"auto"
,
revision
:
Optional
[
str
]
=
None
):
tp_world_size
=
get_tensor_model_parallel_world_size
()
tp_rank
=
get_tensor_model_parallel_rank
()
state_dict
=
self
.
state_dict
()
for
name
,
loaded_weight
in
hf_model_weights_iterator
(
model_name_or_path
,
cache_dir
,
load_format
,
revision
):
if
"rotary_emb.inv_freq"
in
name
:
continue
loaded_weight
=
convert_pyslice_to_tensor
(
loaded_weight
)
if
"W_pack"
in
name
:
total_num_heads
=
self
.
config
.
num_attention_heads
hidden_size
=
self
.
config
.
hidden_size
head_size
=
hidden_size
//
total_num_heads
num_heads
=
total_num_heads
//
tp_world_size
head_start
=
tp_rank
*
num_heads
head_end
=
(
tp_rank
+
1
)
*
num_heads
loaded_weight
=
loaded_weight
.
view
(
3
,
total_num_heads
,
head_size
,
hidden_size
)
loaded_weight
=
loaded_weight
[:,
head_start
:
head_end
,
:,
:]
loaded_weight
=
loaded_weight
.
reshape
(
-
1
,
hidden_size
)
is_gate_up_weight
=
False
for
stride_id
,
weight_name
in
enumerate
([
"gate_proj"
,
"up_proj"
]):
if
weight_name
not
in
name
:
continue
param
=
state_dict
[
name
.
replace
(
weight_name
,
"gate_up_proj"
)]
shard_size
=
param
.
shape
[
0
]
//
2
loaded_weight
=
loaded_weight
[
shard_size
*
tp_rank
:
shard_size
*
(
tp_rank
+
1
)]
param_slice
=
param
.
data
[
shard_size
*
stride_id
:
shard_size
*
(
stride_id
+
1
)]
assert
param_slice
.
shape
==
loaded_weight
.
shape
param_slice
.
copy_
(
loaded_weight
)
is_gate_up_weight
=
True
break
if
is_gate_up_weight
:
continue
param
=
state_dict
[
name
]
if
"embed_tokens"
in
name
or
"lm_head"
in
name
:
load_padded_tensor_parallel_vocab
(
param
,
loaded_weight
,
tp_rank
)
continue
load_tensor_parallel_weights
(
param
,
loaded_weight
,
name
,
self
.
_column_parallel_weights
,
self
.
_row_parallel_weights
,
tp_rank
,
)
class
BaichuanForCausalLM
(
BaiChuanBaseForCausalLM
):
# baichuan 13b
def
__init__
(
self
,
config
):
super
().
__init__
(
config
,
"ALIBI"
)
class
BaiChuanForCausalLM
(
BaiChuanBaseForCausalLM
):
# baichuan 7b
def
__init__
(
self
,
config
):
super
().
__init__
(
config
,
"ROPE"
)
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment