# RODNet: Radar Object Detection using Cross-Modal Supervision This is the official implementation of our RODNet paper at WACV 2021. [[Paper]](https://openaccess.thecvf.com/content/WACV2021/html/Wang_RODNet_Radar_Object_Detection_Using_Cross-Modal_Supervision_WACV_2021_paper.html) [[Dataset]](https://www.cruwdataset.org) ![RODNet Overview](./assets/images/overview.jpg?raw=true) Please cite our WACV 2021 paper if this repository is helpful for your research: ``` @inproceedings{wang2021rodnet, author={Wang, Yizhou and Jiang, Zhongyu and Gao, Xiangyu and Hwang, Jenq-Neng and Xing, Guanbin and Liu, Hui}, title={RODNet: Radar Object Detection Using Cross-Modal Supervision}, booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, month={January}, year={2021}, pages={504-513} } ``` ## Installation Create a conda environment for RODNet. Tested under Python 3.6, 3.7, 3.8. ``` conda create -n rodnet python=3.* -y conda activate rodnet ``` Install pytorch. ``` conda install pytorch torchvision cudatoolkit=10.1 -c pytorch ``` Install `cruw-devkit` package. Please refer to [`cruw-devit`](https://github.com/yizhou-wang/cruw-devkit) repository for detailed instructions. ``` git clone https://github.com/yizhou-wang/cruw-devkit.git cd cruw-devkit pip install -e . cd .. ``` Setup RODNet package. ``` pip install -e . ``` ## Prepare data for RODNet ``` python tools/prepare_dataset/prepare_data.py \ --config configs/ \ --data_root \ --split train,test \ --out_data_dir data/ ``` ## Train models ``` python tools/train.py --config configs/ \ --data_dir data/ \ --log_dir checkpoints/ ``` ## Inference ``` python tools/test.py --config configs/ \ --data_dir data/ \ --checkpoint \ --res_dir results/ ```