# RODNet: Radar Object Detection Network This is the official implementation of our RODNet papers at [WACV 2021](https://openaccess.thecvf.com/content/WACV2021/html/Wang_RODNet_Radar_Object_Detection_Using_Cross-Modal_Supervision_WACV_2021_paper.html) and [IEEE J-STSP 2021](https://ieeexplore.ieee.org/abstract/document/9353210). [[Arxiv]](https://arxiv.org/abs/2102.05150) [[Dataset]](https://www.cruwdataset.org) [[ROD2021 Challenge]](https://codalab.lisn.upsaclay.fr/competitions/1063) [[Presentation]](https://youtu.be/UZbxI4o2-7g) [[Demo]](https://youtu.be/09HaDySa29I) ![RODNet Overview](./assets/images/overview.jpg?raw=true) Please cite our paper if this repository is helpful for your research: ``` @inproceedings{wang2021rodnet, author={Wang, Yizhou and Jiang, Zhongyu and Gao, Xiangyu and Hwang, Jenq-Neng and Xing, Guanbin and Liu, Hui}, title={RODNet: Radar Object Detection Using Cross-Modal Supervision}, booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, month={January}, year={2021}, pages={504-513} } ``` ``` @article{wang2021rodnet, title={RODNet: A Real-Time Radar Object Detection Network Cross-Supervised by Camera-Radar Fused Object 3D Localization}, author={Wang, Yizhou and Jiang, Zhongyu and Li, Yudong and Hwang, Jenq-Neng and Xing, Guanbin and Liu, Hui}, journal={IEEE Journal of Selected Topics in Signal Processing}, volume={15}, number={4}, pages={954--967}, year={2021}, publisher={IEEE} } ``` ## Installation Create a conda environment for RODNet. Tested under Python 3.6, 3.7, 3.8. ```commandline conda create -n rodnet python=3.* -y conda activate rodnet ``` Install pytorch. **Note:** If you are using Temporal Deformable Convolution (TDC), we only tested under `pytorch<=1.4` and `CUDA=10.1`. Without TDC, you should be able to choose the latest versions. If you met some issues with environment, feel free to raise an issue. ```commandline conda install pytorch=1.4 torchvision cudatoolkit=10.1 -c pytorch # if using TDC # OR conda install pytorch torchvision cudatoolkit=10.1 -c pytorch # if not using TDC ``` Install `cruw-devkit` package. Please refer to [`cruw-devit`](https://github.com/yizhou-wang/cruw-devkit) repository for detailed instructions. ```commandline git clone https://github.com/yizhou-wang/cruw-devkit.git cd cruw-devkit pip install -e . cd .. ``` Setup RODNet package. ```commandline pip install -e . ``` **Note:** If you are not using TDC, you can rename script `setup_wo_tdc.py` as `setup.py`, and run the above command. This should allow you to use the latest cuda and pytorch version. ## Prepare data for RODNet ```commandline python tools/prepare_dataset/prepare_data.py \ --config configs/ \ --data_root \ --split train,test \ --out_data_dir data/ ``` ## Train models ```commandline python tools/train.py --config configs/ \ --data_dir data/ \ --log_dir checkpoints/ ``` ## Inference ```commandline python tools/test.py --config configs/ \ --data_dir data/ \ --checkpoint \ --res_dir results/ ```