dataset_cfg = dict( base_root="/mnt/disk2/CRUW/CRUW_MINI", data_root="/mnt/disk2/CRUW/CRUW_MINI/sequences", anno_root="/mnt/disk2/CRUW/CRUW_MINI/annotations", train=dict( seqs=[ '2019_04_09_BMS1000_PL_NORMAL', '2019_04_09_CMS1002_PL_NORMAL', '2019_04_09_PMS1000_PL_NORMAL', '2019_04_09_PMS3001_PL_NORMAL', '2019_05_29_MLMS006_CR_BLUR', '2019_05_29_PBMS007_PL_BLUR', '2019_09_29_ONRD001_CS_NORMAL', '2019_09_29_ONRD002_CS_NORMAL', '2019_09_29_ONRD004_HW_NORMAL', '2019_10_13_ONRD048_CS_NIGHT' ], ), valid=dict( seqs=[], ), test=dict( seqs=[ '2019_04_09_BMS1000_PL_NORMAL', ], ), demo=dict( seqs=[], ), ) model_cfg = dict( type='CDC', name='rodnet-cdc-win16-wobg', max_dets=20, peak_thres=0.3, ols_thres=0.3, ) confmap_cfg = dict( confmap_sigmas={ 'pedestrian': 15, 'cyclist': 20, 'car': 30, # 'van': 40, # 'truck': 50, }, confmap_sigmas_interval={ 'pedestrian': [5, 15], 'cyclist': [8, 20], 'car': [10, 30], # 'van': [15, 40], # 'truck': [20, 50], }, confmap_length={ 'pedestrian': 1, 'cyclist': 2, 'car': 3, # 'van': 4, # 'truck': 5, } ) train_cfg = dict( n_epoch=50, batch_size=4, lr=0.00001, lr_step=5, # lr will decrease 10 times after lr_step epoches win_size=16, train_step=1, train_stride=8, log_step=100, save_step=1000, ) test_cfg = dict( test_step=1, test_stride=8, rr_min=1.0, # min radar range rr_max=20.0, # max radar range ra_min=-60.0, # min radar angle ra_max=60.0, # max radar angle )