Commit a343cf53 authored by Nikhila Ravi's avatar Nikhila Ravi Committed by Facebook GitHub Bot
Browse files

Small fix to tutorial

Summary: Small fix to `fit_textured_mesh.ipynb` tutorial due to a recent change in numpy

Reviewed By: bottler

Differential Revision: D29219990

fbshipit-source-id: f5feeef9eb952720ea7154d066795fbbe64ce7a1
parent 029a9da0
...@@ -406,10 +406,10 @@ ...@@ -406,10 +406,10 @@
" loop.set_description('total_loss = %.6f' % loss)\n", " loop.set_description('total_loss = %.6f' % loss)\n",
" \n", " \n",
" # Save the losses for plotting\n", " # Save the losses for plotting\n",
" chamfer_losses.append(loss_chamfer)\n", " chamfer_losses.append(float(loss_chamfer.detach().cpu()))\n",
" edge_losses.append(loss_edge)\n", " edge_losses.append(float(loss_edge.detach().cpu()))\n",
" normal_losses.append(loss_normal)\n", " normal_losses.append(float(loss_normal.detach().cpu()))\n",
" laplacian_losses.append(loss_laplacian)\n", " laplacian_losses.append(float(loss_laplacian.detach().cpu()))\n",
" \n", " \n",
" # Plot mesh\n", " # Plot mesh\n",
" if i % plot_period == 0:\n", " if i % plot_period == 0:\n",
......
...@@ -645,7 +645,8 @@ ...@@ -645,7 +645,8 @@
" sum_loss = torch.tensor(0.0, device=device)\n", " sum_loss = torch.tensor(0.0, device=device)\n",
" for k, l in loss.items():\n", " for k, l in loss.items():\n",
" sum_loss += l * losses[k][\"weight\"]\n", " sum_loss += l * losses[k][\"weight\"]\n",
" losses[k][\"values\"].append(l)\n", " losses[k][\"values\"].append(float(l.detach().cpu()))\n",
"\n",
" \n", " \n",
" # Print the losses\n", " # Print the losses\n",
" loop.set_description(\"total_loss = %.6f\" % sum_loss)\n", " loop.set_description(\"total_loss = %.6f\" % sum_loss)\n",
...@@ -829,7 +830,7 @@ ...@@ -829,7 +830,7 @@
" sum_loss = torch.tensor(0.0, device=device)\n", " sum_loss = torch.tensor(0.0, device=device)\n",
" for k, l in loss.items():\n", " for k, l in loss.items():\n",
" sum_loss += l * losses[k][\"weight\"]\n", " sum_loss += l * losses[k][\"weight\"]\n",
" losses[k][\"values\"].append(l)\n", " losses[k][\"values\"].append(float(l.detach().cpu()))\n",
" \n", " \n",
" # Print the losses\n", " # Print the losses\n",
" loop.set_description(\"total_loss = %.6f\" % sum_loss)\n", " loop.set_description(\"total_loss = %.6f\" % sum_loss)\n",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment