Deep TEN: Deep Texture Encoding Network Example =============================================== .. image:: ../_static/img/cvpr17.svg :width: 100% :align: left In this section, we show an example of training/testing Encoding-Net for texture recognition on MINC-2500 dataset. Comparing to original Torch implementation, we use *different learning rate* for pre-trained base network and encoding layer (10x), disable color jittering after reducing lr and adopt much *smaller training image size* (224 instead of 352). Test Pre-trained Model ---------------------- - Clone the GitHub repo:: git clone https://github.com/zhanghang1989/PyTorch-Encoding - Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_. - Download the `MINC-2500 `_ dataset using the providied script:: cd PyTorch-Encoding/ python scripts/prepare_minc.py - Download pre-trained model (pre-trained on train-1 split using single training size of 224, with an error rate of :math:`19.70\%` using single crop on test-1 set):: cd experiments/recognition python model/download_models.py - Test pre-trained model on MINC-2500:: python main.py --dataset minc --model deepten --nclass 23 --resume deepten_minc.pth --eval # Teriminal Output: # Loss: 1.005 | Err: 18.96% (1090/5750): 100%|████████████████████| 23/23 [00:18<00:00, 1.26it/s] Train Your Own Model -------------------- - Example training command for training above model:: CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --dataset minc --model deepten --nclass 23 --model deepten --batch-size 512 --lr 0.004 --epochs 80 --lr-step 60 --lr-scheduler step - Detail training options:: -h, --help show this help message and exit --dataset DATASET training dataset (default: cifar10) --model MODEL network model type (default: densenet) --backbone BACKBONE backbone name (default: resnet50) --batch-size N batch size for training (default: 128) --test-batch-size N batch size for testing (default: 1000) --epochs N number of epochs to train (default: 300) --start_epoch N the epoch number to start (default: 0) --lr LR learning rate (default: 0.1) --momentum M SGD momentum (default: 0.9) --weight-decay M SGD weight decay (default: 1e-4) --no-cuda disables CUDA training --plot matplotlib --seed S random seed (default: 1) --resume RESUME put the path to resuming file if needed --checkname set the checkpoint name --eval evaluating Extending the Software ---------------------- This code is well written, easy to use and extendable for your own models or datasets: - Write your own Dataloader ``mydataset.py`` to ``dataset/`` folder - Write your own Model ``mymodel.py`` to ``model/`` folder - Run the program:: python main.py --dataset mydataset --model mymodel Citation -------- .. note:: * Hang Zhang, Jia Xue, and Kristin Dana. "Deep TEN: Texture Encoding Network." *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017*:: @InProceedings{Zhang_2017_CVPR, author = {Zhang, Hang and Xue, Jia and Dana, Kristin}, title = {Deep TEN: Texture Encoding Network}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {July}, year = {2017} }