##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import numpy as np import torch from torch.autograd import Variable, gradcheck import encoding EPS = 1e-3 ATOL = 1e-3 def _assert_tensor_close(a, b, atol=ATOL, rtol=EPS): npa, npb = a.cpu().numpy(), b.cpu().numpy() assert np.allclose(npa, npb, rtol=rtol, atol=atol), \ 'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format( a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max()) def test_aggregate(): B,N,K,D = 2,3,4,5 A = Variable(torch.cuda.DoubleTensor(B,N,K).uniform_(-0.5,0.5), requires_grad=True) X = Variable(torch.cuda.DoubleTensor(B,N,D).uniform_(-0.5,0.5), requires_grad=True) C = Variable(torch.cuda.DoubleTensor(K,D).uniform_(-0.5,0.5), requires_grad=True) input = (A, X, C) test = gradcheck(encoding.functions.aggregate, input, eps=EPS, atol=ATOL) print('Testing aggregate(): {}'.format(test)) def test_scaled_l2(): B,N,K,D = 2,3,4,5 X = Variable(torch.cuda.DoubleTensor(B,N,D).uniform_(-0.5,0.5), requires_grad=True) C = Variable(torch.cuda.DoubleTensor(K,D).uniform_(-0.5,0.5), requires_grad=True) S = Variable(torch.cuda.DoubleTensor(K).uniform_(-0.5,0.5), requires_grad=True) input = (X, C, S) test = gradcheck(encoding.functions.scaled_l2, input, eps=EPS, atol=ATOL) print('Testing scaled_l2(): {}'.format(test)) def test_moments(): B,C,H = 2,3,4 X = Variable(torch.cuda.DoubleTensor(B,C,H).uniform_(-0.5,0.5), requires_grad=True) input = (X,) test = gradcheck(encoding.functions.moments, input, eps=EPS, atol=ATOL) print('Testing moments(): {}'.format(test)) def test_syncbn_func(): # generate input B, C, H = 2, 3, 4 X = Variable(torch.cuda.DoubleTensor(B,C,H).uniform_(-0.5, 0.5), requires_grad=True) gamma = Variable(torch.cuda.DoubleTensor(C).uniform_(-0.5, 0.5), requires_grad=True) beta = Variable(torch.cuda.DoubleTensor(C).uniform_(-0.5, 0.5), requires_grad=True) mean = Variable(torch.cuda.DoubleTensor(C).uniform_(-0.5, 0.5), requires_grad=True) std = Variable(torch.cuda.DoubleTensor(C).uniform_(-0.5, 0.5), requires_grad=True) N = B * H inputs = (X, mean, std, gamma, beta) # grad check test = gradcheck(encoding.functions.batchnormtrain, inputs, eps=EPS, atol=ATOL) print('Testing batchnorm(): {}'.format(test)) def test_non_max_suppression(): def _test_nms(cuda): # check a small test case boxes = torch.Tensor([ [[10.2, 23., 50., 20.], [11.3, 23., 52., 20.1], [23.2, 102.3, 23.3, 50.3], [101.2, 32.4, 70.6, 70.], [100.2, 30.9, 70.7, 69.]], [[200.3, 234., 530., 320.], [110.3, 223., 152., 420.1], [243.2, 240.3, 50.3, 30.3], [243.2, 236.4, 48.6, 30.], [100.2, 310.9, 170.7, 691.]]]) scores = torch.Tensor([ [0.9, 0.7, 0.11, 0.23, 0.8], [0.13, 0.89, 0.45, 0.23, 0.3]]) if cuda: boxes = boxes.cuda() scores = scores.cuda() expected_output = ( torch.ByteTensor( [[1, 1, 0, 0, 1], [1, 1, 1, 0, 1]]), torch.LongTensor( [[0, 4, 1, 3, 2], [1, 2, 4, 3, 0]]) ) mask, inds = encoding.functions.NonMaxSuppression(boxes, scores, 0.7) _assert_tensor_close(mask, expected_output[0]) _assert_tensor_close(inds, expected_output[1]) _test_nms(False) _test_nms(True) if __name__ == '__main__': import nose nose.runmodule()