"""ResNeXt models""" from .resnet import ResNet, Bottleneck from ..model_store import get_model_file __all__ = ['resnext50_32x4d', 'resnext101_32x8d'] def resnext50_32x4d(pretrained=False, root='~/.encoding/models', **kwargs): r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" `_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['bottleneck_width'] = 4 model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnext50_32x4d', root=root)), strict=False) return model def resnext101_32x8d(pretrained=False, root='~/.encoding/models', **kwargs): r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" `_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['bottleneck_width'] = 8 model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnext101_32x8d', root=root)), strict=False) return model