EncNet on CIFAR-10 ================== Test Pre-trained Model ---------------------- - Clone the GitHub repo:: git clone git@github.com:zhanghang1989/PyTorch-Encoding.git - Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_. - Download pre-trained EncNet-32k128d model:: cd PyTorch-Encoding/experiments/recognition bash model/download_models.sh .. _curve: .. image:: ../_static/img/EncNet32k128d.svg :width: 70% - Test EncNet-32k128d pre-trained model (training `curve`_ of this model is shown above, with a final error rate of :math:`3.35\%`):: >>> python main.py --dataset cifar10 --model encnetdrop --widen 8 --ncodes 32 --resume model/encnet_cifar.pth.tar --eval # Teriminal Output: #Loss: 0.129 | Err: 3.350% (335/10000): 100%|█████████████████████████████████████████████| 79/79 [00:49<00:00, 1.58it/s] # Error rate is 3.350 Train Your Own Model -------------------- - Example training command for training above model:: CUDA_VISIBLE_DEVICES=0,1 python main.py --dataset cifar10 --model encnetdrop --widen 8 --ncodes 32 --lr-scheduler cos --epochs 600 --checkname mycheckpoint - Detail training options:: -h, --help show this help message and exit --dataset DATASET training dataset (default: cifar10) --model MODEL network model type (default: densenet) --widen N widen factor of the network (default: 4) --ncodes N number of codewords in Encoding Layer (default: 32) --batch-size N batch size for training (default: 128) --test-batch-size N batch size for testing (default: 1000) --epochs N number of epochs to train (default: 300) --start_epoch N the epoch number to start (default: 0) --lr LR learning rate (default: 0.1) --momentum M SGD momentum (default: 0.9) --weight-decay M SGD weight decay (default: 1e-4) --no-cuda disables CUDA training --plot matplotlib --seed S random seed (default: 1) --resume RESUME put the path to resuming file if needed --checkname set the checkpoint name --eval evaluating Citation -------- .. note:: * Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation" *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*:: @InProceedings{Zhang_2018_CVPR, author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit}, title = {Context Encoding for Semantic Segmentation}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2018} }