##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import torch import shutil import os import sys import time import math def get_optimizer(args, model, diff_LR=True): """ Returns an optimizer for given model, Args: args: :attr:`args.lr`, :attr:`args.momentum`, :attr:`args.weight_decay` model: if using different lr, define `model.pretrained` and `model.head`. """ if diff_LR and model.pretrained is not None: print('Using different learning rate for pre-trained features') optimizer = torch.optim.SGD([ {'params': model.pretrained.parameters()}, {'params': model.head.parameters(), 'lr': args.lr*10}, ], lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) else: optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) return optimizer class CosLR_Scheduler(object): """Cosine Learning Rate Scheduler .. math:: lr = base_lr * 0.5 * (1 + cos(T/N)) where ``T`` is current iters and ``N`` is total iters Args: args: base learning rate :attr:`args.lr`, number of epochs :attr:`args.epochs` niters: number of iterations per epoch """ def __init__(self, args, niters): self.lr = args.lr self.niters = niters self.N = args.epochs * niters self.epoch = -1 def __call__(self, optimizer, i, epoch, best_pred): T = (epoch - 1) * self.niters + i lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi)) if epoch > self.epoch: print('=>Epochs %i, learning rate = %.4f, previous best ='\ '%.3f%%' % (epoch, lr, best_pred)) self.epoch = epoch self._adjust_learning_rate(optimizer, lr) def _adjust_learning_rate(self, optimizer, lr): if len(optimizer.param_groups) == 1: optimizer.param_groups[0]['lr'] = lr elif len(optimizer.param_groups) == 2: # enlarge the lr at the head optimizer.param_groups[0]['lr'] = lr optimizer.param_groups[1]['lr'] = lr * 10 else: raise RuntimeError('unsupported number of param groups: {}' \ .format(len(optimizer.param_groups))) # refer to https://github.com/xternalz/WideResNet-pytorch def save_checkpoint(state, args, is_best, filename='checkpoint.pth.tar'): """Saves checkpoint to disk""" directory = "runs/%s/%s/%s/"%(args.dataset, args.model, args.checkname) if not os.path.exists(directory): os.makedirs(directory) filename = directory + filename torch.save(state, filename) if is_best: shutil.copyfile(filename, directory + 'model_best.pth.tar') # refer to https://github.com/kuangliu/pytorch-cifar/blob/master/utils.py _, term_width = os.popen('stty size', 'r').read().split() term_width = int(term_width) TOTAL_BAR_LENGTH = 86. last_time = time.time() begin_time = last_time def progress_bar(current, total, msg=None): """Progress Bar for display """ global last_time, begin_time if current == 0: begin_time = time.time() # Reset for new bar. cur_len = int(TOTAL_BAR_LENGTH*current/total) rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1 sys.stdout.write(' [') for i in range(cur_len): sys.stdout.write('=') sys.stdout.write('>') for i in range(rest_len): sys.stdout.write('.') sys.stdout.write(']') cur_time = time.time() step_time = cur_time - last_time last_time = cur_time tot_time = cur_time - begin_time L = [] L.append(' Step: %s' % _format_time(step_time)) L.append(' | Tot: %s' % _format_time(tot_time)) if msg: L.append(' | ' + msg) msg = ''.join(L) sys.stdout.write(msg) for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3): sys.stdout.write(' ') # Go back to the center of the bar. for i in range(term_width-int(TOTAL_BAR_LENGTH/2)): sys.stdout.write('\b') sys.stdout.write(' %d/%d ' % (current+1, total)) if current < total-1: sys.stdout.write('\r') else: sys.stdout.write('\n') sys.stdout.flush() def _format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f