import importlib import torch import encoding from option import Options from torch.autograd import Variable if __name__ == "__main__": args = Options().parse() model = encoding.models.get_segmentation_model(args.model, dataset=args.dataset, aux=args.aux, se_loss=args.se_loss, norm_layer=torch.nn.BatchNorm2d) print('Creating the model:') print(model) model.cuda() model.eval() x = Variable(torch.Tensor(4, 3, 480, 480)).cuda() with torch.no_grad(): out = model(x) for y in out: print(y.size())