Context Encoding for Semantic Segmentation (EncNet) =================================================== Install Package --------------- - Clone the GitHub repo:: git clone git@github.com:zhanghang1989/PyTorch-Encoding.git - Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_. Test Pre-trained Model ---------------------- .. hint:: The model names contain the training information. For instance ``FCN_ResNet50_PContext``: - ``FCN`` indicate the algorithm is “Fully Convolutional Network for Semantic Segmentation” - ``ResNet50`` is the name of backbone network. - ``PContext`` means the PASCAL in Context dataset. How to get pretrained model, for example ``FCN_ResNet50_PContext``:: model = encoding.models.get_model('FCN_ResNet50_PContext', pretrained=True) The test script is in the ``experiments/segmentation/`` folder. For evaluating the model (using MS), for example ``Encnet_ResNet50_PContext``:: python test.py --dataset PContext --model-zoo Encnet_ResNet50_PContext --eval # pixAcc: 0.7838, mIoU: 0.4958: 100%|████████████████████████| 1276/1276 [46:31<00:00, 2.19s/it] The command for training the model can be found by clicking ``cmd`` in the table. .. role:: raw-html(raw) :format: html +----------------------------------+-----------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+ | Model | pixAcc | mIoU | Note | Command | Logs | +==================================+===========+===========+===========+==============================================================================================+============+ | Encnet_ResNet50_PContext | 78.4% | 49.6% | | :raw-html:`cmd` | ENC50PC_ | +----------------------------------+-----------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+ | EncNet_ResNet101_PContext | 79.9% | 51.8% | | :raw-html:`cmd` | ENC101PC_ | +----------------------------------+-----------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+ | EncNet_ResNet50_ADE | 79.8% | 41.3% | | :raw-html:`cmd` | ENC50ADE_ | +----------------------------------+-----------+-----------+-----------+----------------------------------------------------------------------------------------------+------------+ .. _ENC50PC: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet50_pcontext.log?raw=true .. _ENC101PC: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet101_pcontext.log?raw=true .. _ENC50ADE: https://github.com/zhanghang1989/image-data/blob/master/encoding/segmentation/logs/encnet_resnet50_ade.log?raw=true .. raw:: html Quick Demo ~~~~~~~~~~ .. code-block:: python import torch import encoding # Get the model model = encoding.models.get_model('Encnet_ResNet50_PContext', pretrained=True).cuda() model.eval() # Prepare the image url = 'https://github.com/zhanghang1989/image-data/blob/master/' + \ 'encoding/segmentation/pcontext/2010_001829_org.jpg?raw=true' filename = 'example.jpg' img = encoding.utils.load_image( encoding.utils.download(url, filename)).cuda().unsqueeze(0) # Make prediction output = model.evaluate(img) predict = torch.max(output, 1)[1].cpu().numpy() + 1 # Get color pallete for visualization mask = encoding.utils.get_mask_pallete(predict, 'pcontext') mask.save('output.png') .. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829_org.jpg :width: 45% .. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829.png :width: 45% Train Your Own Model -------------------- - Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``PASCAL Context`` dataset:: python scripts/prepare_pcontext.py - The training script is in the ``experiments/segmentation/`` folder, example training command:: CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset pcontext --model encnet --aux --se-loss - Detail training options, please run ``python train.py -h``. - The validation metrics during the training only using center-crop is just for monitoring the training correctness purpose. For evaluating the pretrained model on validation set using MS, please use the command:: CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset pcontext --model encnet --aux --se-loss --resume mycheckpoint --eval Citation -------- .. note:: * Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation" *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*:: @InProceedings{Zhang_2018_CVPR, author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit}, title = {Context Encoding for Semantic Segmentation}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2018} }